Joint Extremes of Precipitation and Wind Speed

Peiman Asadi (IAG), Morris Chen (UNSW), and Qihe Tang (UNSW)

All Actuaries Summit, Gold Coast, Australia, 1-3 May 2024

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

2 Data

4 Multivariate EVT

Outline

Data

4 Multivariate EVT

- ◆ □ ▶ → @ ▶ → 注 ▶ → 注 → りへの

- Generalized linear models (GLMs) are widely applied in general insurance pricing (e.g., house insurance premium).
- A typical GLM is of the form

$$g(\mu_i) = \beta_0 + \frac{\beta_1 x_{i1}}{\beta_1 x_{i1}} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip}.$$

Such a GLM can be used to estimate both severity and frequency.

• One of the most important factors is region. Two identical houses merely separated by a street could be charged significantly different premiums if they fall under different regions.

Quotes of house insurance premium

 Except for storm risk, all other variables, including sum insured, building materials, etc., are set to be identical for properties.

- Other risk factors including bushfire and flood are excluded.
- Some observations

. . .

- In this example, storm is a significant determinant of house insurance premiums.
- Primary risk factors for losses include precipitation and wind speed, both of which are region-specific.
- However, the levels of precipitation and wind speed cannot differ significantly for locations that are close to each other.
- Therefore, we aim to create a smoothed pricing surface to mitigate the issue of sudden variations in premiums.

- In current insurance practice, climate risks are not priced.
- Due to the variability and uncertainty of storms, there is no advanced storm model to utilize in the insurance market.
- For modeling purposes, insurers mainly rely on claim histories.
- We explore whether the use of abundant climate data could improve insurance pricing.
- Our study helps to understand the impact of climate change on insurance pricing.

Outline

- ◆ □ ▶ → @ ▶ → 注 ▶ → 注 → りへの

- Time series data from the Australian Bureau of Meteorology (BOM)
- N > 5,000 climate stations
- Records are heterogeneous in nature: differences observed in recorded variables, record frequency, and the years of records. Luckily, both precipitation and wind speed are generally available.
- Non-negligible portions of missing data, due to manual records and station closures

Plot of available stations

- The stations are distributed across NSW, with a higher concentration along coastal areas but lower in inland regions.
- How to price a contract in areas marked X?

Asadi, Chen, and Tang (IAG and UNSW)

3 May 2024

- We utilize daily records for total precipitation and maximum wind speed because:
 - they are the two most damaging factors to buildings;
 - there are also most data points available for analysis.
- We are concerned about tail risk.
 - The devil is in the tails (Donnelly and Embrechts, 2010)
 - The sting is in the tail (Talk by Alan Greenfield, Sarah Wood, and Simon Bradshaw yesterday)
- We employ extreme value theory (EVT) to analyze the data.

2 Data

4 Multivariate EVT

The peaks-over-threshold (POT) approach

The POT approach involves fitting a parametric model to the exceedances over a certain high threshold.

POT Method Illustration with simulated Gamma data

Actuaries Institute

Generalized Pareto distribution (GPD)

- For a loss X, the exceedance Y = X u over a certain high threshold u approximately follows a GPD.
- The standard form of the GPD:

$$H(y) = 1 - \left(1 + \frac{\xi y}{\sigma}\right)^{-1/\xi},$$

where ξ is the shape parameter and $\sigma > 0$ is the scale parameter.

• The shape parameter ξ decides the tail behavior:

•
$$\xi >$$
 0: fat tail

- $\xi = 0$: exponential
- $\xi < 0$: thin tail

- Extreme precipitations tend to occur in clusters as a result of strong temporal dependence within weather observations.
- This dependence between exceedances must be removed prior to fitting threshold models.
- Declustering is a common practice in dealing with climate data.

The automated declustering scheme

11/19

< □ > < @ >

The automated declustering scheme

It is common to assume a running window with a fixed width p for all stations. However, . . .

Asadi, Chen, and Tang (IAG and UNSW)

3 May 2024

Visualizing the 50-year return levels

The 50-year return level is defined as the level that is exceeded on average once every 50 years.

Figure: Return level of precipitation

The smoothing approach

The R-INLA package is applied to create a smoothed surface.

Figure: Shape for precipitation

2 Data

|▲□▶||▲御▶||▲臣▶|||4 臣▶|||臣||||夕�()

- Large losses are driven by individual risk factors and their tail dependence. The latter leads to the so-called compounding effect, which is often overlooked.
- Tail dependence is much harder to perceive and quantify.
- Multivariate EVT = Univariate EVT + Tail Dependence
- Insurance pricing should take account of both individual tail risks and their tail dependence.

For two losses X and Y with distributions F and G, respectively, their tail dependence coefficient is defined as

$$\chi = \lim_{u \to 1} P\left(F(X) > u | G(Y) > u\right).$$

Plot of the tail dependence

Asadi, Chen, and Tang (IAG and UNSW)

3 May 2024

Map of tail dependence

2 Data

|▲□▶||▲御▶||▲臣▶|||4 臣▶|||臣||||夕�()

- The use of climate data could potentially improve insurance pricing.
- A smoothed surface can help to mitigate the issue of sudden variations in premiums.
- Insurance pricing should take account of both individual tail risks and their tail dependence.
- EVT is a powerful tool for pricing climate risks. In doing so, we often need to do declustering.

Thank you very much!!