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Abstract

Climate change is expected to significantly affect the physical, financial, and economic envi-
ronments over the long term, posing risks to the financial health of general insurers. To navigate
these challenges, general insurers need a comprehensive understanding of the impact of climate
change. General insurers typically use Dynamic Financial Analysis (DFA) for a comprehensive
view of financial impacts, but traditional DFA in academic literature often does not consider the
impact of climate change. To address this gap, this study introduces a climate-dependent DFA
approach that integrates climate risk into DFA, providing a comprehensive assessment of the
long-term impact of climate change on the general insurance industry.

The proposed framework has three key features. First, it captures the long-term impact of
climate change on the assets and liabilities of general insurers by considering both physical and
economic dimensions across different climate scenarios within an interconnected structure. Sec-
ond, it addresses the uncertainty of climate change impacts using stochastic simulations within
climate scenario analysis that are useful for actuarial applications. Finally, the framework is tai-
lored to the general insurance sector by addressing its unique characteristics.

To demonstrate the practical application of our model, we conduct an extensive empirical study
using Australian data to assess the long-term financial impact of climate change on the general
insurance market under various climate scenarios, which is enabled by our modelling design. The
results show that the interaction between economic growth and physical risk plays a key role in
shaping general insurers’ risk-return profiles. It should be noted that our analysis is based on the
climate scenarios as defined because our focus is on their implications for general insurers. The
limitations of the scenarios themselves are left for future research.
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Dynamic Financial Analysis (DFA) of General Insurers under Climate Change

1 Introduction

1.1 Background
Climate change poses a multifaceted and profound impact on the financial performance and

position of general insurers. On the liabilities side, shifting weather patterns are likely to alter the
frequency and severity of future claims (see, e.g., Haug et al., 2011; Lyubchich et al., 2019), which
could lead to increased claims costs and adversely affect underwriting profitability. On the assets
side, climate change-induced fluctuations in temperature, shifting patterns of natural disasters,
and evolving socio-economic conditions may significantly influence key macroeconomic variables.
These include inflation rates (see, e.g., Parker, 2018; Economides and Xepapadeas, 2018; Kotz
et al., 2024), interest rates (see, e.g., Bylund and Jonsson, 2020; Mongelli et al., 2022), and eq-
uity returns (see, e.g., Karydas and Xepapadeas, 2022; Venturini, 2022; Barnett, 2023), thereby
impacting the investment performance of general insurers. Ultimately, the combined effects of cli-
mate change on both assets and liabilities will cascade into insurers’ capital positions, potentially
affecting the financial health and stability of the broader general insurance market.

To navigate these challenges, a comprehensive understanding of climate change’s impact on
general insurers is essential. This need is increasingly recognised by regulators, as evidenced
by the growing number of climate-related disclosure requirements, such as IFRS S2 (IFRS, 2023)
and its Australian equivalent, AASB S2 (AASB, 2023). Efforts have been made to incorporate
climate change impacts into the modelling of insurance liabilities and assets, yet a comprehensive
approach remains limited. On the liabilities side, various studies have examined climate change
effects on hazards such as floods (see, e.g., Seneviratne et al., 2021), bushfires (see, e.g., Quil-
caille et al., 2022), and tropical cyclones and storms (see, e.g., Jagger et al., 2008, 2011; Meiler
et al., 2022), generally indicating that rising temperatures exacerbate the frequency and severity of
most hazard events (IPCC, 2021a). Additionally, the impact of climate change on non-catastrophe,
weather-related claims frequency and severity have also been investigated in literature(see, e.g.,
Haug et al., 2011; Lyubchich et al., 2017). On the assets side, climate change impacts on inter-
est rates, inflation rates, and equity returns have been explored both theoretically using General
Equilibrium Models (Economides and Xepapadeas, 2018; Karydas and Xepapadeas, 2022; Bar-
nett, 2023) and empirically using multiple regression (see, e.g., Parker, 2018) and Factor Models
(see, e.g., Venturini, 2022). However, most studies typically focus on individual financial items,
with comprehensive analyses examining the interconnected financial impacts of climate change
on general insurers across both assets and liabilities remaining limited in the current literature.

A widely used tool in the general insurance industry for informing strategic decisions is Dynamic
Financial Analysis (DFA). DFA offers a comprehensive perspective on the financial impacts that
affect general insurers (Coutts and Devitt, 1989; Paulson and Dixit, 1989; Kaufmann et al., 2001;
Eling and Toplek, 2009). It encompasses a suite of methods designed to project and analyse the
future financial position of insurers under various scenarios. Typical applications of DFA include
economic capital modelling, solvency monitoring, and strategy testing. Additionally, it functions
as a model office, enabling management to evaluate current strategies in a theoretical environ-
ment under different scenarios, thereby helping to avoid costly real-world errors (Kaufmann et al.,
2001; Eling and Parnitzke, 2007). It can also be employed to analyse market behaviors within
the general insurance sector (see, e.g., Taylor, 2008). However, existing DFA frameworks in lit-
erature (see, e.g., Kaufmann et al., 2001; D’Arcy and Gorvett, 2004; Consigli et al., 2018) do not
explicitly incorporate climatic factors, which limits their effectiveness in addressing the financial
implications of climate change. To address this gap, we propose a comprehensive yet tractable
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“climate-dependent DFA” framework for examining the multifaceted impacts of climate change on
the general insurance market, as detailed in the following section.

1.2 Statement of contributions
In this paper, we extend the traditional DFA framework by integrating climate change consider-

ations to provide a comprehensive assessment of climate impacts on general insurance markets.
This framework can serve as an initial step in guiding decision-making for both insurers and reg-
ulators facing climate-related challenges. Specifically, we propose the “climate-dependent DFA”
framework, designed to address key attributes of climate change impacts within the general insur-
ance context:

• Comprehensive nature of climate impacts: Extensive studies have shown that climate change
can influence both insurance claims and investment returns as discussed in the previous
section, affecting the assets and liabilities of general insurers. However, most of these stud-
ies consider these impacts in isolation. Given the interdependencies between assets and
liabilities, such an isolated approach may underestimate the overall financial impact of cli-
mate change on general insurers. Furthermore, widely used climate scenarios–such as
the Shared Socioeconomic Pathways (SSP) developed by the IPCC (O Neill et al., 2017)–
combine both physical and economic narratives, necessitating a comprehensive modelling
framework to fully account for these interconnected aspects.
In this paper, we introduce a comprehensive yet tractable “climate-dependent DFA” frame-
work to support decision-making for general insurers and regulators confronting climate-
related challenges. By leveraging the interconnected structure of the traditional DFA frame-
work, our approach integrates the physical and economic aspects of each climate scenario,
ensuring that both asset– and liability– related impacts are captured. This is particularly ad-
vantageous for decision areas influenced by both assets and liabilities, such as economic
capital modelling, capital planning, and solvency monitoring. Meanwhile, we base our frame-
work on tractable models to maintain transparency and interpretability, which are critical ele-
ments in effectivemanagement decisions (Eling and Parnitzke, 2007), and to avoid obscuring
key insights with unnecessary complexity.

• Long-term nature of climate change: Climate change is inherently long-term, and it is usu-
ally challenging to distinguish the effects of global warming from internal variability over short
horizons; indeed, internal variability ranges from inter-annual (e.g., El Niño–SouthernOscilla-
tion) to inter-decadal (e.g., Atlantic Multi-decadal Variability) (IPCC, 2021a). In addition, new
regulations – such as IFRS S2 (IFRS, 2023) and AASB S2 (AASB, 2023) – require insurers
to disclose the long-term financial impacts of climate change. A longer-term perspective is
also essential for decisions by insurers and policymakers that extend across multiple years,
including relocation planning (typically 8 to 40 years (Bower and Weerasinghe, 2021)) and
reinsurance planning (influenced by cycles of about 9 to 11 years (Meier and Outreville, 2006,
2010)).
An initial attempt to measure climate change effects on both assets and liabilities of general
insurers simultaneously is presented in Gatzert and Özdil (2024), albeit limited to a one-year
horizon. Our proposed framework utilizes a multi-year perspective within a DFA structure to
assess the cumulative effects of climate change on general insurers, effectively capturing its
long-term nature as previously discussed.
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• Uncertainty in climate change impacts: The path of future climate is heavily influenced by
the evolution of human society; consequently, scenario analysis is frequently employed in
climate change assessments to capture this uncertainty (O Neill et al., 2017). Although tradi-
tional DFA models attempt to generate a wide range of potential outcomes using stochastic
simulations (Kaufmann et al., 2001), they do not incorporate key qualitative societal factors –
such as environmental awareness, education quality, and political stability – that are critical
for projecting future climate developments (O Neill et al., 2017). Moreover, many commonly
used climate scenarios are deterministic in nature (O Neill et al., 2017; Bertram et al., 2020),
whereas general insurance actuarial applications, such as economic capital modelling, re-
quire both central and distributional forecasts.
In this paper, we embed stochastic simulations within climate scenario analysis to address
these gaps. Our proposed framework accounts for the uncertainty arising from future so-
cietal developments, as well as the inherent randomness in natural and financial systems.
By allowing users to simulate a distribution of financial outcomes across different climate
pathways, the framework supports the assessment of future financial performance under
both expected returns and risks, which are key considerations for insurers, actuaries, and
regulators. Note that our analysis seek to incorporate the economic and environmental as-
sumptions of each climate scenario to assess their implications for general insurers, while
evaluating the validity of those assumptions is beyond the scope of this paper.

Finally, as illustrated above, our proposed framework is specifically designed for the general
insurance sector by incorporating its unique features: it accounts for the interdependence be-
tween assets and liabilities through its interconnected structure and captures the high variability
of liability cash flows using the DFA’s stochastic simulations. In addition, we include catastrophe
reinsurance programs and consider the effects of reinsurance cycles, which is another important
factor influencing insurers’ profitability and solvency (see, e.g., Meier and Outreville, 2006).

To illustrate its practical application, we implement the proposed framework in the Australian
context. Australia’s geography and climate make it especially prone to extreme weather events
such as bushfires, floods, and tropical cyclones. Climate change will intensify many of these haz-
ards particularly in high-emission scenarios (IPCC, 2021b). This may place increasing pressure on
insurers’ capacity to underwrite coverage and maintain solvency. To capture these evolving con-
ditions, we calibrate the framework’s parameters using real Australian data on insurance losses,
macroeconomic indicators, and financial markets, providing realistic insights into the long-term
climate impacts on the Australian general insurance market.

1.3 Scope of the paper
The primary objective of this paper is to provide insights into industry-wide trends over a long-

term horizon under the impact of climate change, rather than to inform short-term, insurer-specific
decision-making. To achieve this, a macro-level modelling framework is adopted, which focuses
on national-level projections of climate change impacts on the general insurance industry. Ac-
cordingly, both the subnational-level modelling of hazards and socio-economic variables, and the
use of such outputs to inform granular decision-making, such as portfolio steering or individual
risk pricing, are considered outside the scope of this study. The aim is to establish a generalised
and scalable framework, rather than one tailored to any specific insurer. Nevertheless, individual
insurers may build upon this foundation by incorporating greater model granularity and integrating
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tools such as proprietary catastrophe models (Mitchell-Wallace et al., 2017) to develop customised
models aligned with their own risk profiles and exposures.

It is also worth mentioning that this paper presents an illustrative example of climate change
impacts on the general insurance market, aimed at demonstrating the application of the proposed
framework. It should not be interpreted as a complete predictive analysis for any specific country
(e.g., Australia). The scope of this study is to illustrate what is possible when integrating climate
considerations into DFA, and to highlight the high-level insights that can be drawn regarding the
potential impacts of climate change on the general insurance sector.

Finally, this study aims to provide a baseline model to assess the financial impact of climate
change on the general insurance market, excluding the influence of short-term policy changes
or regulatory interventions. However, relevant stakeholders can explore the effects of various
government or regulatory actions by applying modifications to the proposed model and comparing
the outcomes against the baseline.

1.4 Outline of the paper
In Section 2, we introduce the modelling framework for the proposed climate-dependent DFA.

Section 2.1 then provides an overview of the structure of this framework. The design of its com-
ponent modules is discussed from Section 2.2 through Section 2.4.

In Section 3, we present and analyse the numerical simulation outcomes – calibrated using
Australian data – generated by the proposed framework. Section 4 concludes the paper, and
Section 5 discusses the limitations and potential directions for future research.

2 Model framework

In this section, we begin by outlining the scenarios employed with their limitations acknowl-
edged and providing an overview of our proposed framework’s structure. We then detail the design
of the component modules within the climate-dependent DFA framework, which collectively enable
users to capture the comprehensive impacts of climate change on general insurers. Specifically,
Section 2.2 introduces the climate and hazards modules, which simulate both climate variables
and the frequency and severity of natural catastrophes over the projection horizon. Subsequently,
Sections 2.3 and 2.4 describe the assets and liabilities modules, respectively, which project future
investment returns and underwriting results under each climate scenario, based on outputs from
the climate and hazards modules. Finally, Section 2.5 introduces the surplus module, which com-
bines outputs from both the assets and liabilities modules, and presents key measures of general
insurance financial performance.

2.1 Model overview
The proposed climate-dependent DFA framework is illustrated in Figure 2.1. A key input to

this framework is the set of climate scenarios, for which we adopt the Shared Socioeconomic
Pathways (SSPs). These SSPs form a widely adopted framework in climate research and they
are central to the IPCC’s climate risk assessments (O Neill et al., 2017). Each SSP scenario is
associated with a narrative, from which the economic growth rate at the technological frontier is
derived (Dellink et al., 2017a). Starting from historical values, country-specific GDP projections
are generated under the assumption that individual economies gradually converge toward this
frontier. The convergence speed is determined by the degree of trade openness, as inferred
from the scenario narratives (Dellink et al., 2017a). The emissions pathways consistent with the
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economic and environmental assumptions underlying each scenario are then used as inputs to
climate models to produce projections of future climate at a much finer spatial resolution, typically
at the level of gridded cells (Eyring et al., 2016).

The narratives of the selected representative climate scenarios are outlined below (O Neill
et al., 2017):

• SSP 2.6 (“Sustainability”): Envisions a world characterised by progressive economic devel-
opment and improving environmental conditions. The combination of low physical risk and
sustainable economic growth results in low challenges for both mitigation and adaptation.

• SSP 4.5 (“Middle of the Road”): Represents a development pathway aligned with typical his-
torical trends observed over the past century, leading to moderate mitigation and adaptation
challenges.

• SSP 7.0 (“Regional rivalry”): Describes a world characterised by slowing economic growth
and environmental degradation due to regional rivalries. Here, the combination of weak eco-
nomic growth and elevated physical risk gives rise to high mitigation and adaptation chal-
lenges.

• SSP 8.5 (“Taking the highway”): Describes a world with rapid economic growth driven by
competitive markets and innovation. Heavy reliance on fossil fuels, however, contributes
to high physical risk and consequently high mitigation challenges, though strong economic
growth leads to relatively low adaptation challenges.

A distinct feature of our framework is its interconnected design, allowing it to capture inter-
actions among the various financial dimensions of general insurers. Beginning at the top of the
diagram, we use the future climate and socioeconomic projections from each SSP scenario as
inputs for modelling other variables within the DFA framework, following the cascading structure
illustrated in the figure.

The projections of climate variables underlying each SSP scenario are used to estimate the
frequency and severity of major natural hazard events in Australia, thereby generating the market-
level catastrophe insurance losses. On the liabilities side, these catastrophe loss estimates trans-
late into claims liabilities for general insurers, taking into account their reinsurance structures and
market shares. On the assets side, socioeconomic projections under each SSP scenario, along
with climate damage estimates from the hazards module, inform the simulation of investment re-
turns. Finally, combining the resulting asset and liability forecasts allows us to derive the surplus
of general insurers, representing an overall measure of market-wide financial performance.

In essence, the interconnected nature of our proposed framework captures both direct and indi-
rect climate change impacts. By recognising dependencies among various financial components,
it offers a comprehensive view of climate change’s impact on the general insurance sector.
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Figure 2.1: Modelling framework of climate-dependent DFA

Remark 2.1. Note that caution is warranted when interpreting the results derived from these sce-
narios, given the limitations of their underlying assumptions, particularly under high-emission path-
ways such as SSP 8.5. This scenario assumes continued economic growth in a high-temperature
environment without accounting for climate tipping points, i.e., significant and potentially irre-
versible changes triggered by global warming that could cause economic collapse (Keen et al.,
2021). However, the timing of such tipping points remains debated: while some climate–economy
models assume they will not occur within the next 300 years (e.g., Nordhaus, 2013), other studies
suggest they could be triggered before 2100 (e.g., Lenton et al., 2008).

Another potential limitation of the economic growth assumptions in the SSP scenarios, as well
as in other climate scenarios such as DICE (Nordhaus, 1992, 2018; Barrage and Nordhaus, 2024),
is that labour productivity is treated as exogenous, without accounting for the potential adverse ef-
fects of climate change (Keen et al., 2021). Yet, research has shown that rising temperatures
above human comfort levels can negatively impact human health (Mora et al., 2017) and reduce
labour productivity (Heal and Park, 2016). However, it is also worth noting that the SSP 8.5 nar-
rative assumes “strong investments in health, education, and institutions to enhance human and
social capital,” alongside “highly engineered infrastructure” (O Neill et al., 2017), which could help
mitigate climate-related productivity losses. Nonetheless, the extent of such mitigation remains
uncertain. The validation and potential refinement of these scenario assumptions are beyond the
scope of this paper and are left for future research.
Remark 2.2. This study focuses on the direct financial impacts of climate change on general insur-
ers, as outlined in the modelling framework presented in Figure 2.1. While indirect effects, such as
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shifts in customer preference toward “greener” insurers or the potential rise in liability risks (e.g.,
lawsuits against commercial policyholders for environmental damage (Alien, 2003; Bullock, 2022)),
are not included here, these are important areas for future research. As quantitativemethodologies
for assessing such risks continue to evolve, their integration into DFA frameworks may become
more feasible.

2.2 Climate and hazards
2.2.1. Climate module

The raw forecasts of climate variables (e.g., temperature, precipitation, and sea-level pressure)
are derived from outputs of the Coupled Model Intercomparison Project Phase 6 (CMIP6). The
findings based on the CMIP6 models play a crucial role in informing the IPCC Sixth Assessment
Report (IPCC, 2021a). CMIP6 comprises a set of global climate model experiments that simulate
historical, present and future climate conditions under IPCC’s SSP scenarios (Eyring et al., 2016).
CMIP6 model outputs are typically provided as gridded datasets, representing climate variables
across latitude–longitude grids over time, with spatial resolutions ranging from 1◦ to 2.5◦. These
outputs are aggregated by averaging across grid cells within defined regions, with the selection of
regions for each hazard type discussed in detail in Section 2.2.2.

One limitation of the raw outputs from CMIP6 models is that they are deterministic in nature. As
highlighted in Section 1.2, it is essential for actuarial applications, especially capital modelling, to
incorporate the stochastic variability (i.e., aleatoric uncertainty) of climate forecasts. Additionally,
model outputs can exhibit biases relative to observations (often due to resolution discrepancies)
(Haug et al., 2011; Maraun, 2013). Furthermore, uncertainties can also arise from limitations in
the climate models used (i.e., model uncertainty) (Liu and Raftery, 2021).

To address these biases and both aleatoric and model uncertainty, we adopt the following
procedure for simulating future climate variables (see Figure 2.2), building on the approach of Liu
and Raftery (2021):

1. Model uncertainty: We use an ensemble of CMIP6 models to capture differences among
future climate forecasts (Liu and Raftery, 2021). This ensemble approach acknowledges
that distinct models can yield varying projections.

2. Bias correction: For each ensemble member, we correct bias by comparing model backcasts
to historical observations via the quantile mapping method, a simple but effective technique
frequently used in the literature (Haug et al., 2011; Maraun, 2013; Sanabria et al., 2022).
Specifically, we estimate

θ̂q = β̂
(m)
0 + β̂

(m)
1 θ̂

(m)
q , (2.1)

where θq and θ̂
(m)
q are the qth quantiles of the historical observations and modelm backcasts,

respectively, over the same reference period.
3. Aleatoric uncertainty: To incorporate inherent randomness, we collect residuals z

(m)
t = θt −

θ̂
(m),∗
t by comparing the bias-corrected model backcasts θ̂

(m),∗
t with actual historical data θt .

We then calibrate a Normal distribution on the residuals (i.e., z(m)
t ∼ N(0,σ2

(m))). Although
simplistic, this assumption is supported by normality tests (e.g., Shapiro–Wilk (Yazici and
Yolacan, 2007)) for most ensemble members.

4. Future projections and simulations: For each simulation path in the future projection period,
we randomly select a CMIP6 model m to generate a deterministic forecast θ̂(m)

t . We apply
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the bias correction as θ̂
(m),∗
t = β̂

(m)
0 + β̂

(m)
1 θ̂

(m)
t , and then draw one trajectory of residuals

z̃
(m)
t to account for aleatoric uncertainty. The final simulated climate variable is thus:

θ̃t = θ̂
(m),∗
t + z̃

(m)
t . (2.2)
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Step 1: Apply bias correction to each ensemble member based on
historical backcasts.

Step 2: Collect the residuals from Step 1. Step 3: Validate the residuals' distribution assumptions.

Step 4: Obtain the raw projection outputs from CMIP 6

Step 5: Simulate the climate variable across the future projection horizon.

Figure 2.2: An illustrative diagram of climate variable simulations

2.2.2. Hazards module
Based on the projected climate variables from the previous module, this section forecasts the

frequency and severity of natural hazards. This constitutes a critical component of the DFA model,
as the resulting hazard forecasts will be employed to model the general insurance assets and lia-
bilities in subsequent sections. Numerous approaches exist for hazard modelling in the literature;
however, as discussed in Section 1.2, balancing model interpretability and comprehensiveness is
essential.

At one extreme, traditional Collective Risk Models (CRMs) (Klugman et al., 2012) offer a sim-
plistic, intuitive means of modelling aggregate insurance losses, and it is also often used in tradi-
tional DFA applications (Kaufmann et al., 2001). Yet, their static assumption regarding insurance
loss distributions neglects the dynamics introduced by climate change. At the other extreme, CAT
models are sophisticated models that are usually capable of capturing the complex environmental
process affected by climate change to generate hazard events based on advanced physical and
mathematical models (Mitchell-Wallace et al., 2017). However, these proprietary models usually
have complex structures with modelling details usually not accessible by general insurers, mak-
ing them less comprehensible for insurers (Weinkle and Pielke Jr, 2017), leading to challenges in
interpretability.

In light of the above considerations, we have opted for the weather-dependent CRMs (Haug
et al., 2011) for modelling insurance losses. These models combine the high interpretability of
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traditional CRMs with the capability to incorporate climate effects by integrating meteorological
variables in the modelling of insurance loss frequency and severity. In essence, the aggregate
catastrophe loss (X̃t) is modelled as:

X̃t =

I∑
i=1

M
(i)
t∑

m=1

X̃
(i),m
t , (2.3)

where M
(i)
t is the number of event of hazard type i in year t, and X̃

(i),m
t is the insurance loss

associated with the mth event of hazard type i in year t. We further assume:

M
(i)
t ∼ Poi(λ(Θ(i)

t )); X
(i),m
t ∼ LN(µ(Θ(i)

t ),σ2), (2.4)

whereΘ(i)
t is a set of weather covariates for hazard type i , and X (i),m

t is the normalised catastrophe
loss adjusted for both inflation and wealth exposure 1. The Poisson distribution aligns with com-
mon practice in modelling the frequency of hazard events (see, e.g., Jagger et al., 2008, 2011).
Similarly, Log-Normal distribution is frequently used for modelling catastrophe losses due to its
heavy-tailed nature (Kaufmann et al., 2001; McNeil et al., 2015), and it is also selected from a
class of heavy-tailed candidates based on our data (see Appendix C.1).

We further specify:
log(λ(i)) = β′

(i)Θ
(i)
t ; µ(i) = α′

(i)Θ
(i)
t , (2.5)

where the set of coefficients β(i) and α(i) are estimated via regression.
We select the weather covariates based on the physical mechanisms driving each hazard type i

and validate them statistically. Here, we focus onmajor Australian hazards: flood, bushfire, tropical
cyclones, storms, hailstorm, and East Coast Lows (IPCC, 2021b). Below, we outline the candidate
weather covariates for each hazard type, drawn from relevant literature on the associated physical
processes.

Bushfire

Bushfire risk depends on temperature, relative humidity, drought conditions, and wind speed
(Sharples et al., 2016; Dowdy, 2018; Quilcaille et al., 2022). Generally, fire danger increases with
higher temperatures, lower humidity, stronger winds, and more severe drought. The Fire Weather
Index (FWI), derived from these factors, is commonly used to assess bushfire risk (Dowdy, 2018;
Quilcaille et al., 2022). In particular, bushfire occurrence responds most strongly to extremes of
the FWI rather than average conditions (Quilcaille et al., 2022). Hence, we choose:

Θ(BF)
t = {fwixxt , fwixdt},

where fwixxt is the annual maxima of fire weather index, and fwixdt is the number of days with
extreme fire weather, which are two crucial statistics capturing FWI extremes (Quilcaille et al.,
2022). The FWI data is subsequently averaged over the land surface area of Australia to derive a
national-level indicator.
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Flood

Precipitation, particularly extreme precipitation, is a key driver of pluvial and river floods (Kodra
et al., 2020; IPCC, 2021a). Accordingly, we choose:

Θ(FL)
t = {Rx5

t ,Rx1
t ,Rt},

where Rt represents the annual total precipitation, Rx1
t is the largest one-day precipitation (usually

denoted as rx1day), and Rx5
t is the largest five-day cumulative precipitation (usually denoted as

rx5day). Both Rx1
t and Rx5

t are commonly used as proxies for extreme precipitation in the IPCC
report (IPCC, 2021a). Similarly, the precipitation data is then averaged across the Australian land
surface area.

Tropical Cyclone and storms

The critical climate drivers for the formation and intensity of cyclones include sea surface temper-
ature (SST) and sea level pressure (Meiler et al., 2022; IPCC, 2021a). Warm ocean water is an
essential condition for storm formation; additionally, low sea level pressure contributes to storm
development by causing warm, moist air to rise (Bureau of Meteorology). Therefore, storms typ-
ically form under conditions of high sea surface temperature and low sea level pressure. When
the wind speed exceeds 119 km/h, the storm is classified as a cyclone (Bureau of Meteorology).

To capture the influence of sea surface temperature and sea level pressure on tropical cyclones
and storms, we choose:

Θ(TC)
m = {SSTm,MSLPm},

where SSTm is the monthly average sea surface temperature over the Australian Tropical Cyclone
Basin 2, and MSLPm is the monthly average mean sea level pressure over the same region. The
use of monthly averages for sea surface temperature and mean sea level pressure is also con-
sistent with common practices in the literature, such as in the CAT model STORM (Bloemendaal
et al., 2020).

Hailstorm

Atmospheric and near-surface temperatures are key drivers of hailstorm formation and intensity
(Raupach et al., 2021). Rising near-surface temperatures increase low-level moisture and convec-
tive instability, potentially boosting hail frequency (Allen et al., 2014; Raupach et al., 2021). Higher
atmospheric temperatures contribute to greater water vapor, intensifying hailstorms, but also raise
the melting level, which can reduce hail frequency by melting smaller hailstones (Raupach et al.,
2021). Thus, the overall impact varies locally, with projections indicating increased hail frequency
in Australia (Leslie et al., 2008; Allen et al., 2014; Raupach et al., 2021).

Accordingly, we choose:
Θ(H)

m = {T̄NS
m , T̄MT

m },

where T̄NS
m is the monthly average near-surface temperature, and T̄MT

m is the monthly average
mid-tropospheric temperature.
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East Coast Lows

An East Coast Low (ECL) is a type of mid-latitude cyclone that forms near the east coast of Aus-
tralia, commonly referred to as the ECL identification region (Pepler et al., 2016a,b; Speer et al.,
2021). However, the formation mechanisms of ECLs differ from those of tropical cyclones. While
tropical cyclones develop over warm ocean waters, ECL formation is primarily driven by sea-
surface temperature gradients (Pepler et al., 2016a).

Based on the above mechanism, we choose:

Θ(ECL)
m = {∆SSTm,SSTm},

where∆SSTm represents the SST gradient near the east coast of Australia, defined as the average
difference between SSTm in the region spanning 24◦–41◦S and 148◦–155◦E, and SSTm in the
corresponding region spanning 24◦–41◦S and 160◦–165◦E (Pepler et al., 2016a).

Remark 2.3. The hazard loss modelling in this study does not explicitly incorporate potential gov-
ernment interventions, such as the introduction of the Australian Cyclone Reinsurance Pool in
2022 (Jarzabkowski et al., 2022). As discussed in Section 1.3, the primary aim of this work is to
develop a general framework, rather than a complete predictive analysis for any specific country.
As a baseline model, it can serve as a foundation for future studies to explore the potential impacts
of various policy interventions.

Remark 2.4. Our forecasts of hazard-related losses are derived from historically calibrated rela-
tionships between climate variables and observed insurance losses. However, these relationships
may change, especially under the impact of tipping points (Neal et al., 2025). Future research could
improve hazard modelling by incorporating tipping point effects and conducting sensitivity analy-
ses to account for the high degree of uncertainty in their timing, triggers, and impact magnitude
(Lenton et al., 2008; Nordhaus, 2013).

2.3 Assets and macro-economic variables
2.3.1. Inflation rates

General inflation rates can influence both the liabilities and assets of general insurers by af-
fecting claims inflation and nominal interest rates (Kaufmann et al., 2001). Baseline inflation rates
are modelled following the common approaches in literature by using the mean-reverting AR(1)
process (see, e.g., Chen et al., 2021; Bégin, 2022):

it = µi + ai (it−1 − µi ) + σiϵi ,t , (2.6)

where it denotes the inflation rate at time t, µi is the long-runmean inflation, ai is the autoregressive
parameter, σi is the volatility, and ϵi ,t represents a standard error term.

Studies have shown that historical fluctuations in weather conditions – such as temperature
shocks and increased temperature variability – can exert inflationary pressures on food, energy,
and service prices (Faccia et al., 2021; Mukherjee and Ouattara, 2021; Ciccarelli et al., 2023). This
inflationary effect ultimately contributes to general inflation. Since climate change is expected to
exacerbate weather fluctuations, it is crucial to account for its impact in modelling inflation rates
(Kotz et al., 2024). To incorporate the influence of climate on inflation, we apply a climate overlay
to the baseline inflation rates, following the methodology proposed by Kotz et al. (2024). To the
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best of our knowledge, the study by Kotz et al. (2024) is the first to quantitatively assess and
project the effects of future climate change on both food and general inflation. Specifically, the
climate-adjusted inflation rate is given by:

iClimt = it + iClim-Impact
t , (2.7)

where iClim-Impact
t captures the additional inflationary effects from climate change. Following the

approach in Kotz et al. (2024), the monthly climate impact on inflation is modelled as:

iClim-Impact
m =

11∑
L=1

(α1+L∆T̄NS
m−L + β1+LT̄

NS
m−L ·∆T̄NS

m−L), (2.8)

where T̄NS
m denotes the monthly average near-surface temperature over Australia and ∆T̄NS

m rep-
resents the deviation of future monthly averages from the 1990–2021 baseline. This formulation
assumes a one-year lag effect. The term β1+L, T̄

NS
m−L · ∆T̄NS

m−L is introduced to capture the inter-
action effect whereby higher temperatures during hotter months lead to larger inflationary impacts
(Faccia et al., 2021; Kotz et al., 2024). For future projections, the monthly average near-surface
temperature will be sourced from the outputs of the climate module described in Section 2.2.1.
The annual climate impact on inflation rates for year t is then obtained by summing the monthly
impacts (Kotz et al., 2024): iClim-Impact

t =
∑

m∈t i
Clim-Impact
m .

2.3.2. Risk-free interest rates
Drawing inspiration from Laubach and Williams (2003) and Holston et al. (2017), we model the

real risk-free short-term interest rate as:

rt = β0 + β1gt + zt , (2.9)

which is closely related to the Ramsey’s equation (Ramsey, 1928), given by r∗ = ρ + γg , where
g denotes the growth rate of potential output, ρ represents the rate of time preference, and r∗

denotes the natural rate of interest. A positive relationship between r∗ and g is expected, as
higher potential growth enhances future income prospects, reducing households’ incentives to
save today and thereby placing upward pressure on natural rate of interest (Mongelli et al., 2022).

In our model, gt denotes the growth rate of potential real GDP. For calibration, these growth
rates will be obtained from theWorld Bank Potential Growth Database (Kilic Celik et al., 2023). For
future projections, gt will be derived from the GDP forecasts under each SSP scenario provided in
the SSP database (Riahi et al., 2017). The residual term zt is assumed to follow an AR(1) process:

zt = µr + ϕr (zt−1 − µr ) + ϵr (t), (2.10)

which captures residual factors not explained by the growth rate. The nominal risk-free rate is then
derived by incorporating inflationary effects using Fisher’s equation: r̃t = rt + iClimt .

In summary, the key inputs for this model are the real GDP growth rate gt and the climate-
adjusted inflation rate iClimt (as output from the inflation model; see Section 2.3.1). These inputs
yield the nominal risk-free rate, r̃t , as the final output.

Remark 2.5. Choice of gt : To mitigate the potential endogeneity issue, here gt is chosen as the
growth rate of potential (full-capacity) GDP in the historical calibration; for future forecasts, gt will
be derived from the potential real GDP forecasts underlying each SSP scenario (Dellink et al.,
2017b). Therefore, the impact of monetary policy (through manipulation of it) on gt is limited, as it
mainly affects short-term output gaps.
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2.3.3. Equity module
We begin by considering the benchmark equity return model proposed by Ahlgrim et al. (2005),

which is given by:
r
(S)
t = r̃(t) + xt , (2.11)

where r̃(t) is the nominal risk-free rates, and xt is the excess equity return.
Under traditional DFA or ESG frameworks (see, e.g., Wilkie, 1995; Ahlgrim et al., 2005; Chen

et al., 2021; Bégin, 2022), excess equity returns are often modelled as independent stochastic pro-
cesses, which is a self-contained approach that can enhance reliability in light of the considerable
uncertainty surrounding exogenous variables over long-term horizons (Wilkie, 1995). However,
relying solely on historical data limits the capacity to capture the forward-looking climate impacts
and the evolving socio-economic conditions under different scenarios.

By contrast, factor models leverage a wide range of climate proxies – often at a granular level
– to assess their influence on equity returns (see, e.g., Bansal et al., 2019; Hong et al., 2019;
Görgen et al., 2020; Venturini, 2022). While these models are effective for empirical, in-sample
analyses of individual or portfolio assets, their extensive data requirements and focus on asset-
specific rather than market-level returns pose challenges for long-term projections, whereas ESG
or DFA typically focuses on market-level returns.

To strike a balance between these two approaches, we propose a partial self-contained frame-
work that incorporates forward-looking climate considerations without relying on overly granular
external data. Inspired by the climate-economic literature (see, e.g., Karydas and Xepapadeas,
2022; Barnett, 2023), our method channels climate’s influence on equity returns through climate-
damaged consumption. In our historical calibration, excess total equity returns are modelled as a
function of corporate earnings growth,∆OPt , which is itself modelled as a function of consumption
growth, ∆Ct . Specifically, we have:

xt = β0 + β1∆OPt + ϵxt , ∆OPt = α0 + α1∆Ct + ϵOt , (2.12)

where ϵxt ∼ N(0,σ2
x) and ϵOt ∼ N(0,σ2

O), with the parameters calibrated via linear regression.
For future simulations, the following steps are undertaken. First, we obtain the simulated nom-

inal market insurance catastrophe loss X̃t from the hazard module (see Section 2.2.2). Next,
these insurance losses are scaled to represent uninsured economic damage, yielding ηX̃t . The
production available for consumption after climate damage is then computed as:

Ct = Yt − ηX̃t . (2.13)

Subsequently, corporate earnings growth for the general sector is simulated based on Equation
(2.12). For the brown sector, we apply a transition stress overlay factor (Grippa and Mann, 2020),
which adjusts corporate earnings growth as:

∆OPB
t = ∆OPt + β∆Y B

t , (2.14)

where ∆Y B
t represents the change in brown energy production, and β is the sensitivity of brown

firms’ corporate profits to these changes. Finally, the total excess return level is derived based on
the simulated operating profit growth using Equation (2.12).

Based on the outputs from the interest rate (Section 2.3.2) and equity modules, investment
returns are calculated as: r It = wf r̃t + (1 + wf )r

(S)
t , where wf is the proportion of the portfolio

allocated to risk-free assets.
14
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In summary, the key inputs to this model are the nominal risk-free rate r̃(t), aggregate catas-
trophe losses X̃t , real GDP projections, and brown energy production for each SSP scenario (Yt

and Y B
t ), with r̃(t) and X̃t obtained from the respective interest rate and hazards modules. The

model outputs are the equity returns for the general portfolio, r (S ,G)
t , and for the brown portfolio,

r
(S ,B)
t . By preserving the simplicity of traditional methods while integrating forward-looking climate
damage projections, this partial self-contained approach captures key trends in evolving climate
and socio-economic conditions without using high-dimensional external factors.

Remark 2.6. The current analysis considers only investments in the Australian market, effectively
using Australian asset returns as a proxy for insurers’ investment portfolio performance. In prac-
tice, however, insurers often hold exposure to foreign assets. This limitation is less concerning
over a long-term horizon, as the SSP framework assumes convergence in economic growth across
different countries (Dellink et al., 2017a). Moreover, persistent return differentials between mar-
kets are expected to diminish over time due to arbitrage. It is also worth noting that the asset
model employed is deliberately simplified to align with the broader design of the framework, which
prioritises scope and interpretability over granular modelling complexity.

Another key assumption in the asset module is that short-term government bonds are consid-
ered free of default risk. This approach aligns with the risk-free treatment commonly adopted in
conventional DFA studies (see, e.g., Kaufmann et al., 2001; D’Arcy and Gorvett, 2004; Consigli
et al., 2018) and is consistent with APRA’s Prescribed Capital Amount (PCA) framework for Aus-
tralian sovereign bonds (APRA, 2023). However, this assumption may require reconsideration
in light of potential climate-induced sovereign downgrades as climate-related damages escalate
(Klusak et al., 2023). The extent of this climate influence on sovereign risk varies across the lit-
erature. For example, Cevik and Jalles (2022) found that climate-related effects on bond spreads
are statistically significant primarily in developing countries, where the capacity to adapt to cli-
mate change is generally weaker, but not in developed countries. In contrast, Klusak et al. (2023)
suggest that highly rated (developed) countries may experience more pronounced rating down-
grades, though this may partly reflect the design of current rating methodologies. Additionally,
Mallucci (2022) projects rising sovereign default probabilities and credit spreads as natural disas-
ters intensify, though their focus is on small island nations with frequent hazard exposure, leaving
the implications for developed economies less certain. Future studies could incorporate default
risk into the modelling of government bond returns within DFA frameworks under climate change
scenarios, leveraging existing findings to assess the potential material impact on the financial per-
formance of general insurers.

2.4 Liabilities and premiums
2.4.1. Insurance costs

Drawing on the hazard module outputs (Section 2.2.2) and assuming an aggregate excess-of-
loss reinsurance contract, the net catastrophe loss allocated to insurer j is determined by:

X̃ net
t,(j) = wj X̃t −min((wj X̃t − d(j))+, L(j)), (2.15)

where X̃t represents the gross CAT losses, wj denotes the market share of insurer j , and d(j)
and L(j) are the inflation and GDP-adjusted reinsurance excess and limit levels for insurer j . The
second term in (2.15) represents the recoverables from reinsurers based on the excess-of-loss
contract.
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In addition to catastrophe losses, another key component of DFA liability modelling is non-
catastrophe losses (Kaufmann et al., 2001). We model non-catastrophe losses with a Tweedie
distribution (Jørgensen and Paes De Souza, 1994), which is a commonly used distribution as-
sumption for modelling non-catastrophe loss. Specifically,

XNC
t ∼ Tweedie(µNC,ϕ), (2.16)

where µNC is the location parameter and ϕ is the dispersion parameter, both calibrated using
historical data. Using a Tweedie distribution implies that claim frequency follows a Poisson distri-
bution, while claim severity follows a Gamma distribution, reflecting the typically high-frequency,
low-severity nature of non-catastrophe losses. Some studies have investigated the influence of
weather on non-catastrophe claims (e.g., McGuire, 2008; Haug et al., 2011; Scheel et al., 2013;
Reig Torra et al., 2023), but these typically require high-resolution daily or monthly municipal-
level data, exceeding the usual granularity of DFA. Moreover, the long-term effect of weather on
non-catastrophe claims is uncertain. For instance, McGuire (2008) found that same-day precipi-
tation increases motor claims frequency, whereas lagged precipitation decreases it possibly due
to cleaner road conditions (Eisenberg, 2004; McGuire, 2008). Consequently, we do not explicitly
incorporate climate impacts in our modelling of non-catastrophe losses.

For projections, the aggregate non-catastrophe loss is computed as

X̃NC
t,(j) = XNC

t · ωt · wj ·
CPIt
CPIs

, (2.17)

where ωt is the total number of risks, s denotes the reference year, and CPIt is the climate-adjusted
CPI from the inflation module (see Section 2.3.1). The total number of risks is modeled as a linear
function of population:

ω̂t = ω̂0 + ω̂1Popt , (2.18)

where Popt is the projected population for each climate scenario, and the parameters ω̂0 and ω̂1

are calibrated on historical data via linear regression. Under these assumptions, climate change
does not directly affect non-catastrophe losses; however, it still influences them indirectly through
population growth and inflation.

Remark 2.7. The exposure growth modelling presented here does not consider the potential loss
of business volume due to premium increases driven by climate change. This simplification relies
on the assumption that household income growth will generally keep pace with rising premiums.
While this may be less concerning under scenarios such as SSP 8.5—where both economic growth
and climate risk are high—or SSP 2.6—where climate risk is low—the issue of affordability may
become more significant under scenarios with weak income growth but elevated climate risk (e.g.,
SSP 7.0). An initial effort to assess premium affordability in the context of climate change in Aus-
tralia is being undertaken through the Insurance Climate Vulnerability Assessment project initiated
by APRA in 2023 (Australian Prudential Regulation Authority, 2023), with results expected by the
end of 2025. Future research could build on these findings to incorporate the impact of premium
affordability on business volume.

2.4.2. Insurance premiums
Based on the distribution assumptions of catastrophe and non-catastrophe losses, the insur-

ance premium is then calculated using the standard deviations loading principle (Paudel et al.,
16
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2013, 2015; Tesselaar et al., 2020):

πt,(j) = E(X̃t,(j)) + ρ
√
Var(X̃t,(j))︸ ︷︷ ︸

CAT premium

+E(X̃NC
t,(j)) + ρ

√
Var(X̃NC

t,(j))︸ ︷︷ ︸
Non-CAT premium

, (2.19)

where ρ is the risk aversion parameter that reflects the level of insurer’s risk aversion towards the
extreme nature of the risk (Paudel et al., 2013). The risk aversion parameter could be selected
empirically. We adopt the assumed risk aversion parameter of 0.55 in Kunreuther et al. (2011) and
Paudel et al. (2013), which is based on an empirical survey analysis conducted by Kunreuther and
Michel-Kerjan (2011). The implication of this assumption on the projected premiums growth will
also be examined in Section 3.2.3.

2.4.3. Reinsurance premiums and cycles
Based on the reinsurance structure specified in Section 2.4.1, the reinsurance premium is

derived as:

πRI
t,(j) = E[min((X̃t,(j) − d(j))+, L(j))] + ρ

√
Var(min((X̃t,(j) − d(j))+, L(j))). (2.20)

Similarly, the second term in (2.20) represents the surcharge on the premium above the expected
value of the loss, which is dependent on the variability of the reinsurance losses.

Since reinsurers typically cover the extreme tail of insurers’ risk portfolios through excess-of-
loss coverage, large natural catastrophes can strain reinsurance capital, potentially triggering a
hard reinsurance market with higher premiums (Tesselaar et al., 2020). This effect is expected to
intensify as climate change increases catastrophe losses (Tesselaar et al., 2020). One popular
explanation of this phenomenon is the capital constraint theory, suggesting firms prefer to accu-
mulate surplus internally (via higher premiums) rather than raising costly external capital, leading
to persistence during the hard market phase (Winter, 1988, 1994; Dicks and Garven, 2022).

In conventional Dynamic Financial Analysis (DFA) applications, market cycles are often mod-
elled using an AR(2) process (see, e.g., Cummins and Outreville, 1985; Boyer et al., 2012) or a
Markov chain (see, e.g., Kaufmann et al., 2001; Eling et al., 2008). However, these approaches
do not explicitly model the key process drivers of market cycles (e.g., capital level), which can
be influenced by external environmental factors, particularly under the impacts of climate change
across different scenarios. To address this limitation, we directly model the reinsurance premium
as a function of reinsurance capital using a negative exponential function, inspired by the functional
form in Taylor (2008):

πRI ,∗
t,(j) = max

(
πRI
t,(j),π

RI
t,(j)e

−k1·(St−1−S0)
)
, (2.21)

where St−1 denotes the solvency ratio at the end of period t − 1, S0 represents the reference
(or steady-state) solvency ratio, and k1 is the premium-to-solvency sensitivity parameter. The
solvency ratio is defined as the ratio of reinsurance capital to premium (i.e., St−1 = KRe

t−1/π
RI ,∗
t−1 ),

where the reinsurance capital is derived as:

KRe
t = (1 + r̃

(I )
t )

KRe
t−1 +

J∑
j=1

πRI ,∗
t,(j)

−
J∑

j=1

min
[
(X̃t,(j) − d(j))+, L(j)

]
. (2.22)

Here, we assume that reinsurers earn the same investment returns as direct insurers. The spec-
ification in (2.21) ensures that premiums increase as the solvency ratio decreases. Furthermore,
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due to the concave nature of the function, a decline in capital levels results in a more pronounced
increase in premiums compared to the decrease in premiums when capital levels rise. This asym-
metry aligns with the assumptions in Winter (1994), where insurers are assumed to be averse to
the risk of bankruptcy.

Remark 2.8. We acknowledge that the reinsurance cycle model presented here is a simplified
representation, as it assumes a single reinsurer exclusively covering catastrophe losses in Aus-
tralia. Despite its highly stylised nature, the model generally captures the inverse relationship
between reinsurance capital and premium pricing dynamics. The impacts of climate change on
the reinsurance cycle itself could be a separately interesting topic, and we will leave it for future
research.

2.5 Surplus and performance measures
Based on the simulated quantities from the previous module, the market surplus process is

derived as (Kaufmann et al., 2001):

Kt =

J∑
j=1

K
(j)
t =

J∑
j=1

(1 + r̃
(I )
t )(K

(j)
t−1 + π̃

(j)
t )− (X̃ net

t,(j) + X̃NC
t,(j)), (2.23)

where K
(j)
t represents the surplus for entity j at time t. Market insolvency is defined as Kt < 0.

To determine the initial capital levelK (j)
0 , the base capital requirement K̃ (j)

0 is calibrated to satisfy
Pr(K (j)

1 ≤ 0) = 0.5%, consistent with the solvency standards under Solvency II (Christiansen and
Niemeyer, 2014). Recognizing that insurers typically maintain capital buffers above the minimum
required capital to mitigate insolvency risk, we scale this base requirement using a target capital
ratio τ . Therefore, the final starting capital is thus computed as K

(j)
0 = τ K̃

(j)
0 .

The financial performance of general insurers is typically evaluated using both returns and risk
measures. For returns, we consider the median surplus med(Kt) – the median of the surplus
distribution at time t – alongside the expected surplus:

E(Kt) =
1

N

N∑
n=1

K
(n)
t , (2.24)

where N is the total number of simulations. These two measures are commonly used returns
metrics in DFA studies (see, e.g., Kaufmann et al., 2001).

For the risk measures, we use both insolvency probability and the deficit-given-insolvency ratio.
The insolvency probability, a common DFA risk metric (Kaufmann et al., 2001), is calculated as
the proportion of simulations yielding zero or negative capital:

P(Kt < 0) =
1

N

N∑
n=1

I(K (n)
t ≤ 0). (2.25)

The second measure we consider is the deficit-given-insolvency ratio, given by:

E
[
−Kt

Lt
| Kt < 0

]
, (2.26)
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where Lt =
∑J

j=1 X̃
net
t,(j) + X̃NC

t,(j) represents the total claims liabilities at time t. This ratio measures
the severity of the market deficit conditional on insolvency and is analogous to the Loss-Given-
Default (LGD) metric used in reinsurance credit risk (Chen et al., 2020). Together, these risk
measures provide a comprehensive assessment of both the likelihood and severity of adverse
outcomes in the surplus process.

3 Numerical results and discussions

After introducing the modelling framework for the climate-dependent DFA, this section presents
numerical examples to demonstrate its application within the Australian general insurance market.
Section 3.1 outlines the data sources and parameter calibrations used in the proposed framework.
Section 3.2 analyses key simulation results from individual modules and discusses their potential
financial implications for general insurers. Finally, Section 3.3 analyses and compares general
insurers’ financial performance under different climate scenarios using both risk and return mea-
sures.

3.1 Data and calibration
3.1.1. Data sources
Climate data

The historical weather data used to calibrate the climate and hazard modules are sourced from
ERA 5 reanalysis data (Copernicus Climate Change Service, 2024b), which combines past ob-
servations with current weather computer models to provide consistent estimates of atmospheric,
land and oceanic climate variables from 1950 to the present. For future projections, we use the
outputs from the CMIP6 models (Copernicus Climate Change Service, 2024a), which offers pro-
jected meteorological variables under various emissions scenarios up to 2100 at both monthly
and daily resolutions. Additionally, the CMIP6 models generate backcasts of climate variables
from 1850 to 2014, which –together with historical data – are used to calibrate the bias correc-
tion and aleatoric uncertainty models as detailed in Section 2.2.1. As our analysis focuses on
the frequency and severity of hazards at the national level, we use the average values of climate
observations across all gridded cells for calibration and projection purposes.

Hazards data

To calibrate the frequency and severity models for catastrophe insurance losses as detailed in
Section 2.2.2, we draw on the ICA dataset (Copernicus Climate Change Service, 2024c), which is
maintained by the Insurance Council of Australia. This dataset covers all recorded natural disas-
ters in Australia from 1967 to 2024, including variables such as disaster locations, start and end
dates, and total insured damages.

Macro-economic data

In Section 2.3.2, we calibrate the interest rate model using the RBA cash rates data (Reserve Bank
of Australia, 2024) and potential GDP growth estimates from the World Bank Potential Growth
Database (Kilic Celik et al., 2023). The RBA dataset covers cash rate targets and overnight cash
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rates from 1976 to 2023, while the World Bank Database offers annual Australian potential GDP
growth from 1981 to 2021. Consequently, the calibration period spans 1981–2021.

In Section 2.3.1, we calibrate the inflation rates model with data from Australian Bureau of
Statistics (2024b), which provides quarterly Consumer Price Index (CPI) information for Australia
from 1948 to 2023. These data are aggregated to an annual scale to align with the DFA model’s
time resolution.

For projections, we obtain socio-economic variables from the IIASA SSP database (Riahi et al.,
2017), offering forecasts of GDP, population, and energy production at the five-year interval under
multiple development paths at the country level. Spline interpolation (Erdogan, 2013) is then used
to convert these projections to annual data.

Financial data

To calibrate the equity models described in Section 2.3.3, we employ Australian gross corporate
operating profits and total returns data for the All-Ordinaries share index. The corporate operating
profits dataset, sourced from Australian Bureau of Statistics (2024a), covers the total industry on
a quarterly basis from 1994 to 2023. The All-Ordinaries index data, obtained from FactSet (2024),
provides daily-to-annual total returns from 1992 to 2023.

Insurance market statistics

In addition to the data sources mentioned above, we draw on Australian insurancemarket statistics
from the General Insurance Performance Statistics database (APRA, 2024b) and the General
Insurance Institution-Level Statistics database (APRA, 2024a). These data inform our market
assumptions and support the calibration of the non-catastrophe loss model (see Section 2.4.1).
Because no direct non-catastrophe loss data are publicly available, we derive industry-level non-
catastrophe losses by subtracting the ICA-recorded catastrophe losses from the total industry
losses reported in the General Insurance Performance Statistics database (APRA, 2024a), after
joining those two datasets.

The General Insurance Performance Statistics database contains quarterly aggregate financial
data on Australian general insurers from 2002 to 2023, while the General Insurance Institution-
Level Statistics database provides annual, institution-level financial information from 2005 to 2023.
Both databases include key metrics such as insurance losses, premiums, equity bases, and the
number of underwritten risks.

3.1.2. Calibration results
Due to the large number of parameters, the bias-correction and noise volatility parameters

calibrated for selected climate variables in the climate module are presented in Appendix B for
illustrative purposes.

Table 3.1 presents the calibrated parameters for the selected model of each hazard type 3. The
pool of candidate models from which these were chosen is detailed in Appendix C. Each final haz-
ard model was selected on the basis of both the physical mechanisms discussed in Section 2.2.2
and relevant statistical measures. For instance, in Table B, all candidate flood frequency models
exhibit positive coefficients for precipitation variables, which aligns with the physical processes
behind pluvial and riverine flooding. Among these models, Model 3 (using rx5day as a proxy
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for extreme precipitation) demonstrates the best performance based on both AIC and BIC values,
which are commonly used criteria in classical GLM regressions that consider both in-sample fit and
model complexity (James et al., 2013). Additionally, the covariate coefficient in Model 3 is statisti-
cally significant at the 5% level. Hence, we select Model 3 as the final flood frequency model. As
another example, even though the atmospheric temperature coefficient is not statistically signifi-
cant at either the 5% or 10% levels, we retain it in the final model due to the importance of both
atmospheric and near-surface temperature, and their potentially opposing effects on hailstorm
frequency (see Section 2.2.2).

Hazards Parameters Values Data (for calibration) Data (for projection)
Flood βrx5day

(λ) 0.037** ERA 5 re-analysis; ICA data CMIP 6
βrx5day
(µ) 0.035* ERA 5 re-analysis; ICA data CMIP 6

Bushfire βmfwixx
(λ) 0.084** ERA 5 re-analysis; ICA data CMIP 6

Cyclones βSST
(λ) 1.213*** ERA 5 re-analysis; ICA data CMIP 6

Storms βSST
(λ) 0.348** ERA 5 re-analysis; ICA data CMIP 6

βSST
(µ) 0.239 ERA 5 re-analysis; ICA data CMIP 6

East Coast Low β∆SST
(λ) 2.189* ERA 5 re-analysis; ICA data CMIP 6

Hails βTNS

(λ) 0.211*** ERA 5 re-analysis; ICA data CMIP 6
βTMT

(λ) -0.079 ERA 5 re-analysis; ICA data CMIP 6

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
Table 3.1: Calibration of key parameters: Hazard modules

The calibrated parameters for the real risk-free interest rate and inflation rate models are shown
in Table 3.2. The positive impact of potential GDP growth on real rates (as captured by the pa-
rameter β1) aligns with the expectations discussed in Section 2.3.2. For temperature impacts on
inflation, the coefficients α1+L and β1+L are taken from Kotz et al. (2024), who calibrated these
parameters across 121 countries to evaluate climate-related effects on inflation.

Model Parameters Values Data (for calibration) Data (for projection)
Real rates β1 (∂rt/∂gt ) 2.206** RBA cash rate; SSP database (IIASA)

World Bank Potential Growth Database
µr -0.0005
ϕr 0.478
σr 0.025

Inflation α1+L, β1+L — (Kotz et al., 2024) CMIP 6

µi 0.0517 ABS CPI data
ai 0.713 ABS CPI data
σi 0.0309 ABS CPI data

Table 3.2: Calibration of key parameters: Macro-economic variables

The calibrated parameters for the equity model are shown in Table 3.3. The parameter α1

(which shows the sensitivity of operating profit growth to the consumption growth) and σO (which
shows the standard deviations of the operating profit growth) are calibrated based on the Australian
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operating growth data (Australian Bureau of Statistics, 2024a) and the consumption growth data
(World Bank Group, 2024). The parameter β1 (which shows the sensitivity of the excess equity
returns to operating profit growth) and the parameter σX (which is the standard deviations of the
excess equity returns) are calibrated based on the operating growth data (Australian Bureau of
Statistics, 2024a) and the total returns data on All-Ordinaries index (FactSet, 2024). The results
suggest a positive relationship between operating profit growth and consumption growth, and a
positive relationship between operating profit growth and excess equity returns, which aligns with
expectations as discussed in Appendix A.

To calibrate the sensitivity of operating profits in brown firms 4 to planned changes in production
under various climate scenarios (sourced from the SSP database (Riahi et al., 2017)), we adopt
a simplified approach akin to that used in Grippa and Mann (2020). We estimate the impact of
changes in output on operating profits for a representative firm in the Australian energy sector
by considering its fixed and variable costs. These results are then extrapolated to other oil and
gas firms within the sector. Woodside Energy Group Ltd (WDS) is selected as the representative
firm, given its dominant market share of 66% in the Australian energy sector as of March 2024
(FactSet, 2024). The impact of output changes is calculated as the average percentage change in
operating profit per 1% change in production, based on the historical financial statements available
from 2014 to 2021 in FactSet. While this approach is intentionally simplified, general insurers may
refine it to better align with their portfolio compositions. Enhancements could include integrating
more granular transition risk metrics, potentially incorporating proprietary data sources.

Parameters Values Data (for calibration) Data (for projection)
α1 (∂∆OPt/∂∆Ct ) 3.824* World Development Indicators (World Bank); SSP database (IIASA)

ABS Business Indicators CMIP 6

σO 0.083
β1 (∂xt/∂∆OPt ) 0.047 ABS Business Indicators; All-Ordinaries index (Factset) SSP database (IIASA)

σx 0.103
β(B) (∂∆OPB

t /∂∆YB
t ) 1.768 Income statements of WDS (Factset) SSP database (IIASA)

Table 3.3: Calibration of key parameters: Equity returns

Table 3.4 presents the market assumptions underlying our simulations, derived from general
insurance market statistics (APRA, 2024c) and financial disclosures from individual insurers. In
the projections, both excess and limit levels are adjusted for changes in GDP and CPI across
future periods and under different climate scenarios.

Size of Insurers Numbers Market Shares Excess (normalised) Limit (normalised)
Large 4 20% $1000 million $600 million
Medium 4 3% $150 million $90 million
Small 12 0.67% $33 million $20 million

Table 3.4: Market assumptions

Table 3.5 summarises the additional assumptions used in the simulations. The target capital
ratio is determined as the general insurance industry’s average ratio of eligible equity to the Min-

22



Dynamic Financial Analysis (DFA) of General Insurers under Climate Change

imum Capital Requirement (MCR), based on data from the APRA General Insurance Institution-
Level Statistics database (APRA, 2024a). The uninsured-to-insured loss ratio is used to scale
catastrophe insurance losses from the hazard module to uninsured economic damage, serving
as an input to the equity model. This ratio is calculated as the average proportion of uninsured to
insured losses over the historical period from 1985 to 2023, using data from the EM-DAT database
(EM–DAT, 2023), since the ICA dataset records only insurance losses.

Parameters Type Values Source
ρ Risk-aversion 0.55 Kunreuther et al. (2011); Paudel et al. (2013)
τ Target capital ratio 1.75 APRA (2024a)
η Uninsured-to-insured loss ratio 1.22 EM–DAT (2023)
wrf Allocation to risk-free assets 60% 5 OECD (2023)
wB Allocation to brown assets 3% Gatzert and Özdil (2024)

Table 3.5: Other assumptions

3.2 Key simulation results from individual modules
3.2.1. Climate and hazards

The simulated climate variables derived from the CMIP6 model outputs (Copernicus Climate
Change Service, 2024a) are presented in Figure 3.1. In this figure, the solid lines represent the
average simulation path, while the dashed lines indicate the 5th and 95th percentiles. The results
suggest that most climate variables, except for SST gradients, exhibit an upward trend, particularly
under high-emission scenarios, indicating an overall increase in climate risk.

In addition to this long-term trend, the average simulation path also shows notable inter-annual
variability. This variability, likely driven by internal climate processes (e.g., El Niño cycles) cap-
tured by the CMIP6 models (Jain et al., 2023), may contribute to annual fluctuations in insurance
premiums and costs as shown in later sections.

Furthermore, the projections display a high degree of uncertainty, as shown by the wide range
between the 5th and 95th percentiles. This uncertainty, also highlighted in other studies (see, e.g.,
Wu et al., 2022), arises from both the climate model uncertainty and the aleatoric uncertainty
incorporated in our climate module (see Section 2.2.1). Given that such uncertainty, especially
at the upper percentiles, is crucial for actuarial applications and capital modelling, these findings
underscore the importance of accounting for uncertainty in climate projections, as discussed in
Section 1.2 and 2.2.1.
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Figure 3.1: Simulation results of climate variables: Average simulation path (solid lines), 5th and 95th per-
centiles of simulations (dashed lines)

Based on the simulated climate variables, catastrophe losses for each hazard type are gener-
ated using the calibrated relationships between climate variables and hazard frequency and sever-
ity as described in Section 3.1.2. Overall, the projected normalised losses exhibit an increasing
trend for most hazards, particularly under high-emission scenarios, with notable increases in both
the mean and the upper tails of the loss distributions. Moreover, the results reveal considerable
uncertainty, driven by both the variability in simulation of climate variables as shown in Figure 3.1
and the heavy-tailed nature of catastrophe losses. The rising mean and volatility are expected to
place upward pressure on both insurance and reinsurance premiums, as well as shocks to capital
over time.
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Figure 3.2: Simulation results of hazard losses (normalised): Average simulation path (solid lines), 5th and
95th percentiles of simulations (dashed lines)

Remark 3.1. Despite the simplified structure of our hazard models, the simulation results gen-
erally align with trends in hazard risk based on physical mechanisms reported in the literature.
The projected increases in losses from bushfires and floods are consistent with previous find-
ings (IPCC, 2021a,b), reflecting the intensification of extreme fire weather across Australia and
increased extreme precipitation in most regions. The rising losses from tropical cyclones and
storms are primarily driven by increasing mean sea-surface temperatures, as illustrated in Figure
3.1 and based on the calibrated model described in Section 3.1.2.

For tropical cyclones, existing literature suggests a decrease in the total number of cyclones but
an increase in the frequency of high-intensity events (IPCC, 2021b). Since our frequency models
rely on the ICA dataset, which only records hazards that result in catastrophe losses, the projected
frequency reflects the number of catastrophe-level events (i.e., high-intensity tropical cyclones).
Therefore, the increasing trend projected by our models is broadly consistent with findings in the
literature.

Regarding hailstorms, although rising near-surface and atmospheric temperatures have op-
posing effects on storm dynamics, a net increase in losses is projected. This trend is attributed
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to the stronger influence of near-surface temperature on storm frequency, as shown in Table 3.1,
and aligns with the expected increases in hailstorm frequency in Australia (Leslie et al., 2008; Allen
et al., 2014; Raupach et al., 2021).

For East Coast Lows, a slight decreasing trend is observed in the simulations, driven by trends
in sea-surface temperature gradients. This result is consistent with the existing studies, which sug-
gest a decrease in the East Coast Low frequency particularly under the high-emission scenarios.
(Pepler et al., 2016a,b; Speer et al., 2021).

However, our focus is on the general trends in hazard losses rather than their exact magnitudes,
as this application example seeks to assess industry-wide patterns. For more granular decision-
making at the corporate level, such as capital allocation and portfolio steering, general insurers
can leverage proprietary claims data to tailor their hazard models to their specific portfolios.

3.2.2. Investment returns
The simulation results for the cumulative investment returns, presented on a logarithmic scale,

are shown in Figure 3.3 6. The uncertainty bounds in the figure account for historical fluctuations in
interest rates and equity returns, as well as the variability in climate-related damage to production
available for consumption, as illustrated in Figure 3.5 and derived via (2.13).

The observed trends in cumulative investment returns are primarily driven by the economic
growth assumptions underlying each SSP scenario (Figure 3.4). Under SSP 8.5, the highest cu-
mulative investment return is projected, driven by its robust economic growth assumption (O Neill
et al., 2017), followed by SSP 2.6. Conversely, SSP 7.0 exhibits the weakest cumulative invest-
ment return, influenced by both its slow economic growth assumptions and high catastrophe dam-
ages, in line with its narrative (O Neill et al., 2017). The relatively high investment returns under
SSP 8.5 and SSP 2.6 are likely to accelerate capital accumulation. By contrast, the lower returns,
coupled with high catastrophe losses in SSP 7.0 (see Figures 3.6 and 3.2), are expected to slow
the pace of capital accumulation under this scenario.

Remark 3.2. The projected damage ratios from our climate-dependent DFA model are also com-
pared with estimates from existing literature; a detailed discussion can be found in Appendix D.
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Figure 3.3: Simulated (log) compounded investment
returns: Average simulation path (solid lines), 5th and
95th percentiles of simulations (dashed lines)
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3.2.3. Premiums and underwriting losses
The normalized gross premiums associated with catastrophe (CAT) coverage are presented in

Figure 3.7. An overall increasing trend is found, driven by the rising risk of most hazards as shown
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in Figure 3.2. Gross CAT premiums reach their highest levels under SSP 8.5, particularly in the
later projection period, followed by SSP 7.0, SSP 4.5, and SSP 2.6, in line with the physical risk
narratives underlying those scenarios as described in Section 2.1. In addition to this general up-
ward trend, significant inter-annual variability is observed, reflecting the internal climate variability
of the underlying climate variables as shown in Figure 3.1.

Moreover, the proportion of CAT premiums relative to total general insurance premiums is
expected to increase relative to the historical levels, with a more pronounced increase under high-
emission scenarios. This is illustrated in Figure 3.8, which compares projected CAT premium
proportions with historically observed CAT loss proportions (used here as a proxy for historical
CAT premium proportions) derived from the General Insurance Performance Database (APRA,
2024c) and the ICA dataset. These findings suggest that catastrophe losses will have an increas-
ingly significant impact on the underwriting performance of general insurers under the influence of
climate change. Consequently, managing CAT exposures will become a more critical component
of portfolio management for general insurers.
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Figure 3.7: Gross premiums associated with catas-
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A similar pattern to the gross insurance premiums emerges in the reinsurance premiums (Fig-
ure 3.9), which show a general upward trend. The highest projected premium occurs under SSP
8.5, followed by SSP 7.0, while SSP 2.6 is expected to have the lowest premium.

To illustrate the role of reinsurance capital constraints, Figure 3.10 presents the average rel-
ative difference between the solvency-sensitive reinsurance premiums (in (2.20)) and the base
premiums (in (2.21)). The largest uplift appears under SSP 7.0, likely due to low investment re-
turns coupled with high insurance losses (Sections 3.2.1 and 3.2.2), resulting in slower capital
accumulation and prolonged tight capacity. In contrast, SSP 8.5 exhibits the smallest uplift de-
spite experiencing the highest catastrophe (CAT) losses, possibly because its stronger investment
returns (see Section 3.2.2) accelerate capital accumulation and shorten tight-capacity periods. A
similar pattern is also observed in the primary general insurance market (see Section 3.3).
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Using the calculated premiums and simulated catastrophe losses from the hazardmodule (Sec-
tion 3.2.1), we derive the simulated underwriting losses, with normalized results presented in Fig-
ure 3.11. On average, the simulated underwriting loss remains below zero (indicating a positive
underwriting profit) and is relatively consistent across scenarios, which could be explained by the
premium loadings. At higher quantiles, however, underwriting losses remain similar across sce-
narios initially but rise substantially in later periods under high-emission pathways (SSP 8.5 and
SSP 7.0) due to escalating climate risks. This upward shift in the tail of underwriting losses can
be attributed to the increasing volatility and extreme percentile of hazard losses observed under
high-emission scenarios (see Section 3.2.1). Consequently, while downside liability impacts on fi-
nancial performance appear moderate at first, they are expected to intensify over longer projection
horizons in the high-emission scenarios.
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Figure 3.11: Simulations of underwriting losses (normalised)

3.3 Risk and returns measures
Finally, the risk and return measures for the general insurance market can be derived from the

surplus, which is calculated using outputs from the individual modules (see (2.23)). Figures 3.12
and 3.13 show the expected and median surplus, which are our return measures, across different
SSP scenarios. Under SSP 8.5, surplus is highest, followed by SSP 2.6, whereas SSP 7.0 yields
the lowest surplus.

To investigate the drivers of these surplus trends, Figures 3.14 and 3.13 compare the expected
and median surplus with cumulative investment returns at their average and median paths, reveal-
ing that differences in cumulative investment returns largely explain the observed surplus patterns.
These findings align with earlier results showing that underwriting profits or losses are similar at
mean levels across scenarios (Section 3.2.3), making investment growth the primary driver of
mean and median surplus trends. Since investment returns are predominantly affected by the
economic growth assumptions underlying each scenario (Section 3.2.2), the divergent economic
growth paths in different SSP scenarios are expected to be the key drivers of expected returns to
the general insurance industry.
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Figure 3.13: Median market surplus (log-scale)
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Figure 3.14: Expected market surplus (log-
scale) v.s Average compounded investment re-
turns (log-scale)
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Figure 3.15: Median market surplus (log-scale)
v.s Median compounded investment returns
(log-scale)

Figure 3.16 shows market insolvency probabilities under various scenarios, a common risk
metric in DFA studies (Kaufmann et al., 2001). SSP 7.0 exhibits the highest insolvency rates,
followed by SSP 4.5 and SSP 2.6. Although SSP 7.0 does not incur the highest hazard losses,
its poor investment returns (Section 3.2.2), substantial reinsurance premium increases (Section
3.2.3), and relatively high catastrophe (CAT) losses (Section 3.2.1) collectively erode profits and
constrain capital accumulation, leading to high insolvency probabilities once both physical and
economic aspects of the climate change are considered. These outcomes align with the physical
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and economic narratives underlying the SSP 7.0 scenario (Section 2.1).
Interestingly, although SSP 8.5 is generally associated with the highest physical risk in climate

science literature (e.g., IPCC, 2021a), it yields the lowest projected insolvency probabilities once
both physical and economic factors are considered into the modelling of general insurers’ assets
and liabilities. This may be attributed to stronger investment returns, driven by robust economic
growth under the SSP 8.5 scenario, outpacing underwriting loss growth in the early projection
horizon (see Figures 3.3 and 3.11). As a result, capital accumulates more rapidly, particularly
over the early projection horizon. Indeed, Figure 3.18 indicates that SSP 8.5 exhibits the highest
average Compound Annual Growth Rate (CAGR) of market surplus 7, which could help insurers
absorb potential losses at later stages. These findings align with the SSP 8.5 narrative of “robust
economic growth”, which leads to “low adaptation challenges” except in extreme case (O Neill
et al., 2017).

However, when insolvency does occur, SSP 8.5 incurs the most severe impact in later pro-
jection horizons, as indicated by the market deficit-given-insolvency ratios (Figure 3.17). These
ratios, which also represent the proportion of claims unable to be paid to policyholders when insol-
vency occurs, imply that policyholders face the greatest losses under SSP 8.5 in tail events. This
outcome likely arises from higher underwriting losses in the distribution tails under SSP 8.5, espe-
cially later in the projection period (Section 3.2.3; Figure 3.11), despite relatively small differences
in early-horizon underwriting losses across scenarios. Moreover, given the limitations of the SSP
8.5 scenario assumptions discussed in Section 2.1, insurers should also be mindful of the potential
for economic collapse triggered by climate tipping points, though it is not currently reflected in the
scenario’s underlying economic assumptions.

SSP 2.6 presents a more balanced risk-return profile, characterised by the second-highest ex-
pected surplus, second-lowest insolvency risk, and relatively small market deficits in insolvency.
Additionally, catastrophe-related insurance and reinsurance premiums are expected to be the low-
est under this scenario, which could potentially improve affordability and expand insurance cov-
erage to protect society against climate risks. These findings align with SSP 2.6’s narrative of
“sustainable economic development” and “improving environmental conditions”, which contribute
to “low mitigation and adaptation challenges” (O Neill et al., 2017).
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Figure 3.16: Market insolvency probabilities
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Figure 3.18: Mean Compound Annual Growth Rate (GACR) of market surplus, by projection horizons and
climate scenarios

4 Conclusions

This study makes two key contributions. First, we propose a climate-dependent DFA frame-
work that integrates climate risk into traditional Dynamic Financial Analysis. While previous studies
examine the impacts of climate change on assets and liabilities separately, a unified framework
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remains underexplored. General insurers commonly use DFA to assess overall financial perfor-
mance, yet conventional models do not account for climate risk. Our framework addresses this
gap by leveraging the interconnected structure of DFA to capture the complex interactions of cli-
mate impacts on both assets and liabilities. Additionally, it incorporates a multi-year perspective
to reflect the long-term nature of climate change. The uncertainty surrounding climate risks is ad-
dressed through stochastic simulations within climate scenario analysis, enabling the assessment
of both risk and return dimensions. Finally, by incorporating the unique characteristics of gen-
eral insurers, our framework provides realistic insights into the financial consequences of climate
change on the insurance market.

Second, we conduct an extensive empirical study to assess the long-term impact of climate
change on the Australian general insurance market, demonstrating the practical application of our
framework. In climate science literature, SSP 8.5 is typically associated with the highest physical
risk, followed by SSP 7.0, SSP 4.5, and SSP 2.6 (IPCC, 2021a). Our hazard simulations and CAT
premium projections align with this ranking. However, when both economic and physical dimen-
sions of climate scenarios are considered in relation to insurers’ assets and liabilities, we find that
SSP 7.0, characterised by high physical risk and poor economic growth, is the most detrimental
scenario for insurers, leading to the lowest returns and highest insolvency risk. In contrast, SSP
8.5 yields the highest returns and lowest insolvency risk due to strong economic growth, but it
also results in the largest market deficit in insolvency, posing significant risks to policyholders.
These findings underscore the importance for general insurers to prepare for scenarios combining
high catastrophe risk with weak economic growth in their critical strategic decisions, such as busi-
ness planning, capital management, and reinsurance strategies. Additionally, insurers should be
prepared for the tail-end financial repercussions of climate risk, particularly under high-emission
scenarios such as SSP 8.5. Regulators, in turn, should ensure that insurers maintain sufficient
capital buffers to withstand losses under different climate pathways and collaborate with govern-
ments to establish contingency plans, such as bail-out mechanisms, to mitigate systemic risks
arising from the insolvency of major insurers.

5 Limitations and extensions

5.1 Reliances and limitations
By necessity, the modelling framework presented in this study relies on several simplifying

assumptions to address the complexity and scale of climate risk. While this approach provides a
practical starting point, it introduces several important limitations that could be addressed in future
research.

Firstly, our analysis relies on the economic and environmental assumptions embedded in the
SSP scenarios. As noted in Remark 2.1, these assumptions have several inherent limitations.
Validating and refining these assumptions, and assessing their implications for general insurers,
presents a valuable direction for future research and may require interdisciplinary collaboration
among economists, climate scientists, and actuaries.

Secondly, our hazard loss forecasts are based on historically calibrated relationships between
climate variables and observed insurance losses, which may change in the future. Future research
could adopt a more forward-looking approach to account for these potential changes, as noted in
Remark 2.4.

Thirdly, our framework is limited to disasters occurring within Australia and does not account for
global spillover effects. As highlighted by (Neal et al., 2025), climate-induced economic damage
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can propagate across borders through international trade. Modelling such global linkages would
provide a more comprehensive assessment of climate and market risks faced by local insurers.

A final limitation of our framework, as noted in Remark 2.7, is that it does not account for the
potential loss of business volume resulting from rising premiums due to climate change. Address-
ing this aspect in future research could provide a more comprehensive assessment of long-term
financial impacts on general insurers.

5.2 Extensions and future work
Our framework also offers several promising avenues for extension. First, this study focuses

on assessing climate risks at an industry-wide level, serving as a starting point for integrating
climate considerations into DFA frameworks. Building on the general framework proposed here,
individual insurers could develop tailored, firm-level climate-dependent DFA models aligned with
their specific risk profiles and exposure characteristics.

Second, as discussed in Remark 2.3, the model presented here serves as a baseline for mea-
suring climate impacts without policy interventions. Future studies could assess the impacts of
regulatory measures against the baseline to evaluate the effectiveness of different regulatory ap-
proaches across a range of climate scenarios.

Finally, the modelling approach adopted in this study is intentionally broad but relatively sim-
plified. Future studies could consider more advanced component models to improve precision or
address specific analytical needs. For example, incorporating proprietary catastrophe (CAT) mod-
els could provide more granular hazard modelling, while adding foreign investments and default
risk assessments could strengthen the asset module, as noted in Remark 2.6. However, these
enhancements should be carefully weighed against the trade-off between model complexity and
parsimony, which is a key consideration in DFA applications.

Data and Code

The R code used to generate the results in this paper is available at https://github.com/
agi-lab/climate-dependent-DFA. The datasets supporting the findings of this study are stored
separately at https://zenodo.org/records/15098758. Detailed instructions for data access and
code execution are provided on the linked GitHub page.

Due to licensing restrictions, we are unable to provide the Total Returns series of the All-
Ordinaries Shares Index. Users are encouraged to obtain this data directly from FactSet. For
those without a FactSet subscription, we provide pseudo data for model calibration, simulated
from the calibrated equity model.

Similarly, we cannot distribute the financial statements of Woodside Energy Limited obtained
from FactSet for the period 2014–2023. Users may access this data via FactSet or alterna-
tively compile it manually from publicly available financial reports at https://www.woodside.com/
investors/reports-investor-briefings. Formodels calibrated using these non-public datasets,
we have applied the same parameters derived from the original data in the code to ensure con-
sistency with the simulation results presented in this paper.
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Notes
1The per-event normalised loss is defined as: X (i),m

t = X̃
(i),m
t · CPIs

CPIt ·
Real GDPs
Real GDPt

, which adjusts
the nominal loss (X̃ (i)

t ) for both the price level and total wealth in reference year s. Although our
normalization technique is relatively simple, it aligns with conventional approaches in the literature
(see, e.g., Pielke and Landsea, 1998; Vranes and Pielke Jr, 2009). While more granular factors
could be incorporated into normalization (see, e.g., Crompton and McAneney, 2008; Pielke, 2021),
our focus on future projections rather than historical trends – and on national-level rather than
granular losses – supports the adoption of a more parsimonious approach.

2Note: The cyclone basin refers to the area of tropical cyclone formation.
3The notation in the table represents the coefficient associated with the climate variable (indi-

cated as a superscript of β) for a specific distribution parameter (indicated as a subscript of β).
For example, βrx5day

(λ) reflects the sensitivity of the frequency parameter (λ) to changes in rx5day,
while βrx5day

(µ) shows the sensitivity of the location parameter of the severity distribution to changes
in rx5day.

4Here, we define brown firms as those operating within the oil and gas sector.
5The assumption is that the majority of bonds are invested in risk-free government securities,

as insurers typically prefer government bonds over corporate bonds (OECD, 2023). Additionally,
cash and deposits are considered nearly risk-free assets

6Here, the log-scale cumulative investment return is defined as: rcumt = log
(∏t

s=1

(
1 + rs

))
.

This can also be written as: rcumt = log
(∏t

s=1

(
1 + rs

))
= log

(
V0

∏t
s=1(1+rs)
V0

)
= log

(
Vt
V0

)
, where Vt

is the total investment value at time t.
7The Compound Annual Growth Rate (CAGR) of the insurance surplus over the projection

horizon Th is given by: CAGRh =
(
KTh
K0

) 1
Th − 1. This measure, commonly used in finance to

assess the average growth rate of an investment portfolio (Grimm, 2023), is employed here to
evaluate the rate of capital accumulation across different projection horizons.

8Note that the market deficit-given-insolvency ratio exhibits high volatility across all climate sce-
narios in the early projection horizon. This is likely due to the relatively small number of simulation
paths that become insolvent at early stages (see Figure 3.16), which leads to greater fluctuation
in the calculated ratios.
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A Equity models: supplementary details

In Section 2.3.3, equity returns are modelled as a function of operating profit growth, which in
turn is modelled as a function of consumption growth. In this section, we examine the validity of
this modelling assumption.

Dividend growth is a critical driver of total equity returns (see, e.g., Lettau and Ludvigson,
2005). The total dividends paid by corporations can be expressed as:

Dt = (βt(1− Taxt)ζt)Ct , (A.1)

where βt is the share of corporate’s operating profits in the total economy at time t, Taxt is the tax
rate, and ζt is the dividend payout ratio at time t. Consequently, dividend growth is given by:

∆dt =
(βt(1− Taxt)ζt)Ct

(βt−1(1− Taxt−1)ζt−1)Ct−1
− 1. (A.2)

If the share of corporate operating profits, tax rates, and dividend payout ratios remain constant
over time, dividend growth would be equal to consumption growth.

However, this assumption may be too restrictive. Instead of assuming a constant dividend
payout ratio, we allow its change to be relatively constant over time (i.e., 1 + ∆ζt = ζ1 + ϵ, with
ϵ ∼ N(0,σ2)), then the change in dividend growth could be written as a linear function of the
operating profit growth:

∆dt = ζ0 + ζ1∆OPt + ϵ̃t , (A.3)

where ∆OPt is the change in operating profits defined as OPt = βt(1− Taxt)Ct . This formulation
is analogous to our empirical model specified in (2.12).

Furthermore, the change in operating profit can be expressed as a function of consumption
growth:

∆OPt = (1 +∆γt)∆Ct +∆γt , (A.4)

where 1 + ∆γt = (1 + ∆βt)(1 + ∆(1 − Taxt)). Assuming that the changes in the proportion of
corporate profits to total consumption (i.e., ∆βt) and in tax rates (i.e., ∆(1 − Taxt)) are relatively
constant over time, the change in operating profit can be modelled as a linear function of con-
sumption growth:

∆OPt = α0 + α1∆Ct + ϵ̃t , (A.5)

which is consistent with our empirical model in (2.12). As shown in Figure A, the assumption of
a constant change in tax rates is supported by historical data, with Australian corporate tax rates
remaining at 30% since 2002. Moreover, the proportion of corporate earnings is relatively stable
over time, as demonstrated in Figure B.
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rate operating profits to total consumption in Aus-
tralia (Data source: Australian Bureau of Statistics
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B Detailed calibration results for climate modules

Model names β̂
(m)
0 β̂

(m)
1 σ̂(m)

ACCESS-CM2 2.257 0.883 1.271
CanESM5-CanOE 2.484 0.889 1.354
CESM2 -0.065 0.987 1.256
CMCC-CM2-SR5 -2.18 1.085 1.405
CNRM-CM6-1 0.735 0.974 1.321
CNRM-ESM2-1 0.868 0.942 1.186
FGOALS-f3-L 0.944 0.98 1.294
FGOALS-g3 -1.132 1.039 1.23
INM-CM4-8 1.345 0.971 1.199
INM-CM5-0 2.222 0.948 1.195
IPSL-CM6A-LR -0.139 1.055 1.428
MCM-UA-1-0 1.329 0.899 1.401
MIROC-ES2L -2.734 1.045 1.255
MIROC6 -0.85 0.931 1.325
MPI-ESM1-2-LR 1.441 0.916 1.288
MRI-ESM2-0 -0.046 0.96 1.375
NorESM2-MM -0.858 1.036 1.267

Table A: Near-surface temperature (monthly-average): Calibrated bias-correction coefficients (β̂(m)
0 and

β̂
(m)
1 ), and standard deviation of noise (σ̂(m)) 39
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Model names β̂
(m)
0 β̂

(m)
1 σ̂(m)

ACCESS-CM2 0.926 1.045 1.622
CanESM5-CanOE -4.122 0.924 1.32
CESM2 -4.897 0.881 1.491
CNRM-CM6-1 6.783 1.04 1.412
CNRM-ESM2-1 5.617 1.025 1.366
INM-CM4-8 12.879 1.361 1.346
INM-CM5-0 14.56 1.384 1.502
IPSL-CM6A-LR 1.294 1.001 1.409
MCM-UA-1-0 -0.307 0.982 1.368
MIROC-ES2L -10.139 0.675 1.488
MIROC6 -4.526 0.86 1.369
MPI-ESM1-2-LR 1.847 1.036 1.475
MRI-ESM2-0 3.861 1.102 1.448
NorESM2-MM -6.233 0.838 1.408
UKESM1-0-LL 2.097 1.066 1.596

Table B: Air temperature (monthly-average): Calibrated bias-correction coefficients (β̂(m)
0 and β̂

(m)
1 ), and

standard deviation of noise (σ̂(m))

Model names β̂
(m)
0 β̂

(m)
1 σ̂(m)

ACCESS-CM2 -2.418 0.996 0.316
CNRM-CM6-1 4.446 0.801 0.263
FGOALS-f3-L 2.266 0.924 0.35
FGOALS-g3 0.792 0.955 0.279
INM-CM4-8 1.414 0.944 0.239
INM-CM5-0 0.636 0.994 0.255
MCM-UA-1-0 2.26 0.881 0.378
MIROC-ES2L -5.092 1.204 0.356
UKESM1-0-LL 1.157 0.943 0.262

Table C: Sea-surface temperature (monthly-average): Calibrated bias-correction coefficients (β̂(m)
0 and

β̂
(m)
1 ), and standard deviation of noise (σ̂(m))
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Model names β̂
(m)
0 β̂

(m)
1 σ̂(m)

ACCESS-CM2 -17.133 1.306 8.675
ACCESS-ESM1-5 -4.806 1.239 8.346
CanESM5 -0.279 1.234 9.263
CMCC-CM2-SR5 57.288 1.052 7.644
CMCC-ESM2 53.705 0.959 10.141
EC-Earth3 -45.561 1.726 8.791
FGOALS-g3 8.191 1.323 8.697
GFDL-ESM4 5.471 1.261 8.534
INM-CM4-8 17.222 1.582 9.137
INM-CM5-0 -9.668 1.898 8.932
IPSL-CM6A-LR 42.053 1.074 8.376
KACE-1-0-G -35.045 1.209 8.592
MIROC6 30.162 0.911 9.741
MPI-ESM1-2-HR -42.055 1.476 8.781
MPI-ESM1-2-LR -23.581 1.359 8.883
MRI-ESM2-0 -20.99 1.108 8.844
NorESM2-MM 40.105 0.992 8.963
TaiESM1 50.755 1.001 9.536

Table D: Fire Weather Index: Calibrated bias-correction coefficients (β̂(m)
0 and β̂

(m)
1 ), and standard deviation

of noise (σ̂(m))

Model names β̂
(m)
0 β̂

(m)
1 σ̂(m)

ACCESS-CM2 2471.323 0.975 146.064
CanESM5-CanOE 18345.06 0.819 136.658
CESM2 14433.794 0.857 154.145
CMCC-CM2-SR5 14248.639 0.859 144.904
CNRM-ESM2-1 2981.637 0.97 144.572
INM-CM4-8 -12552.876 1.125 133.775
INM-CM5-0 -25169.454 1.25 145.112
MCM-UA-1-0 37431.853 0.629 125.137
MIROC-ES2L 6250.218 0.942 179.028
MIROC6 624.259 0.998 169.48
MPI-ESM1-2-LR -8807.205 1.087 170.452
MRI-ESM2-0 -23938.494 1.234 185.582
NorESM2-MM 15219.903 0.85 155.486
UKESM1-0-LL 10695.377 0.894 142.076

Table E: Mean sea-level pressure (MSLP): Calibrated bias-correction coefficients (β̂(m)
0 and β̂

(m)
1 ), and stan-

dard deviation of noise (σ̂(m))
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Model names β̂
(m)
0 β̂

(m)
1 σ̂(m)

access-cm2 2.811 1.156 18.276
access-esm1-5 4.2 1.051 17.659
bcc-csm2-mr -22.791 1.417 20.799
canesm5 -12.108 1.517 18.868
cmcc-esm2 6.167 1.007 19.607
ec-earth3 -12.368 1.2 19.394
gfdl-esm4 -14.868 1.321 16.222
inm-cm4-8 11.73 0.985 18.008
inm-cm5-0 3.857 1.115 18.983
ipsl-cm6a-lr -5.697 1.305 17.26
kace-1-0-g 16.459 0.953 16.631
miroc6 -45.993 1.728 19.952
mpi-esm1-2-hr 14.079 0.875 17.57
mpi-esm1-2-lr -3.133 1.185 17.843
mri-esm2-0 20.245 0.835 16.37
noresm2-lm -19.198 1.364 18.09
noresm2-mm -17.776 1.263 18.665

Table F: Largest five-day cumulative precipitation (rx5day): Calibrated bias-correction coefficients (β̂(m)
0 and

β̂
(m)
1 ), and standard deviation of noise (σ̂(m))

Model names β̂
(m)
0 β̂

(m)
1 σ̂(m)

ACCESS-CM2 -0.199 1.31 0.498
CNRM-CM6-1 0.399 1.053 0.485
FGOALS-f3-L -1.589 0.722 0.513
FGOALS-g3 -1.713 1.047 0.529
INM-CM4-8 0.63 0.765 0.501
INM-CM5-0 0.074 0.71 0.481
MCM-UA-1-0 -0.229 1.044 0.47
MIROC-ES2L -0.264 0.774 0.437
UKESM1-0-LL -0.021 0.636 0.462

Table G: Sea-surface temperature gradients: Calibrated bias-correction coefficients (β̂(m)
0 and β̂

(m)
1 ), and

standard deviation of noise (σ̂(m))
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C Detailed calibration results for hazard modules

C.1 Comparison of goodness-of-fit for catastrophe loss distributions

Distributions AIC BIC Rank (AIC) Rank (BIC)

Log-Normal 9366.825 9366.825 1 1
Weibull 9405.851 9412.683 3 3
Pareto 9379.475 9386.307 2 2
Cauchy 9560.989 9567.821 4 4

Table A: Goodness-of-fit for catastrophe loss distributions: AIC and BIC

C.2 Flood

Model 1 Model 2 Model 3* Model 4 Model 5 Model 6

(Intercept) -2.177** -4.295** -3.714** -4.326** -3.666** -4.191**
(0.004) (0.002) (0.001) (0.005) (0.002) (0.002)

Precipitation 0.004** 0.000 0.000
(0.005) (0.967) (0.902)

rx1day 0.081** 0.083+ 0.041
(0.002) (0.098) (0.515)

rx5day 0.037** 0.035+ 0.020
(0.001) (0.099) (0.487)

AIC 138.6 136.1 136.0 138.1 138.0 137.6
BIC 142.7 140.1 140.0 144.1 144.1 143.7
Log.Lik. -67.306 -66.026 -65.998 -66.025 -65.991 -65.788
F 7.838 9.906 10.511 4.948 5.285 5.269
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Table B: Flood: candidate frequency models
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Model 1 Model 2 Model 3* Model 4 Model 5 Model 6

Precipitation 0.003+ 0.000 -0.001
(0.086) (0.942) (0.826)

rx1day 0.071* 0.076 0.004
(0.049) (0.335) (0.963)

rx5day 0.035* 0.040 0.034
(0.029) (0.170) (0.339)

AIC 2000.5 1999.6 1998.7 2001.6 2000.6 2000.6
BIC 2006.1 2005.2 2004.3 2009.1 2008.1 2008.1
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Table C: Flood: candidate severity models

C.3 Bushfire
Here, mfwixx represents the annual maximum of the Fire Weather Index averaged across all

gridded cells in Australia, while xfwixx denotes the highest annual maximum of the Fire Weather
Index across all gridded cells. Similarly, mfwixd represents the average duration of extreme fire
weather across all gridded cells, whereas xfwixd denotes the longest duration of extreme fire
weather observed across all gridded cells in Australia.

Model 1* Model 2 Model 3 Model 4 Model 5 Model 6

mfwixx 0.084** 0.092**
(0.002) (0.001)

xfwixx 0.004 -0.005
(0.418) (0.482)

mfwixd 0.072** 0.109**
(0.001) (0.007)

xfwixd 0.012 -0.014
(0.111) (0.262)

AIC 118.3 127.9 119.7 120.1 126.3 120.8
BIC 122.3 132.0 125.8 124.2 130.3 126.9
Log.Lik. -57.130 -61.968 -56.858 -58.053 -61.137 -57.394
F 9.889 0.657 5.433 10.195 2.547 5.470
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Table D: Bushfire: candidate frequency models

As all coefficients in the bushfire severity model are statistically insignificant and the stationary
Log-Normal distribution yields the lowest AIC and BIC values, we adopt the stationary Log-Normal
distribution to model bushfire severity.
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Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

mfwixx 0.016 0.008
(0.652) (0.822)

xfwixx 0.008 0.007
(0.461) (0.532)

mfwixd -0.003 0.029
(0.931) (0.603)

xfwixd -0.004 -0.012
(0.652) (0.495)

Num.Obs. 37 37 37 37 37 37
AIC 1527.0 1526.6 1528.6 1527.2 1527.0 1528.7
BIC 1531.8 1531.5 1535.0 1532.0 1531.8 1535.1
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Table E: Bushfire: candidate severity models

C.4 Tropical cyclones

Model 1* Model 2 Model 3

Intercept -33.005*** 545.650*** 367.462***
(<0.001) (<0.001) (<0.001)

SST 1.213*** 0.989***
(<0.001) (<0.001)

MSLP -0.005*** -0.004***
(<0.001) (<0.001)

AIC 257.3 258.0 244.1
BIC 266.3 267.0 257.7
Log.Lik. -126.625 -127.005 -119.067
F 27.719 36.066 16.122
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Table F: Tropical cyclones: candidate frequency models
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Model 1 Model 2 Model 3 Model 4

SST -79.405
(0.189)

SST2 1.560
(0.194)

MSLP -2.022
(0.342)

MSLP2 0.000
(0.343)

cs(SST) -0.886 -1.096*
(0.129) (0.048)

cs(MSLP) -0.001
(0.346)

AIC 1612.2 1613.0 1614.5 1613.1
BIC 1618.8 1619.6 1624.3 1629.5
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
Table G: Tropical cyclones: candidate severity models

C.5 Storms

Model 1* Model 2 Model 3

Intercept -11.573*** 161.061** 71.386
(<0.001) (0.008) (0.364)

SST 0.348** 0.260+
(0.003) (0.073)

MSLP -0.002** -0.001
(0.007) (0.291)

AIC 516.1 518.2 517.0
BIC 526.5 528.6 532.6
Log.Lik. -256.058 -257.101 -255.499
F 8.800 7.240 4.888
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Table H: Storms: candidate frequency models
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Model 1* Model 2 Model 3

SST 0.239 0.176
(0.103) (0.296)

MSLP -0.001 -0.001
(0.149) (0.471)

AIC 2504.3 2504.9 2505.8
BIC 2510.7 2511.3 2514.3
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Table I: Storms: candidate severity models

C.6 East Coast Low

Model 1 Model 2*

Intercept -2.593 -2.260*
(0.518) (0.041)

SST -0.098
(0.625)

SST gradients 2.189+
(0.053)

AIC 81.7 77.8
BIC 90.7 86.8
Log.Lik. -38.828 -36.888
F 0.239 3.732
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
Table J: East Coast Low: candidate frequency models

Given the limited data and high uncertainty in projected East Coast Low intensities under cli-
mate change (Pepler et al., 2016b), we assume a stationary distribution for the normalized severity
of East Coast Lows.
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C.7 Hailstorms

Model 1

Intercept -11.589*
(0.014)

Atmospheric temperature -0.079
(0.452)

Near-surface temperature 0.211***
(<0.001)

AIC 281.3
BIC 296.9
Log.Lik. -137.654
F 6.437
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Table K: Hailstorm: frequency model

As all coefficients are statistically insignificant and their signs do not align with expectations
(e.g., a positive relationship between near-surface temperature and hailstorm intensity is antici-
pated), we adopt a stationary Log-Normal distribution to model hailstorm severity.

Model 1

Atmospheric temperature -0.049
(0.724)

Near-surface temperature -0.083
(0.394)

AIC 1304.8
BIC 1310.4
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Table L: Hailstorm: severity model

D Comparison of projected damage ratios in literature

The projected economic damage ratios from our climate-dependent DFA model (Section 3.2.2)
are compared with estimates from the Dynamic Integrated Model of Climate and the Economy
(DICE), originally proposed by Nordhaus (1992). The DICE model has been widely adopted in
climate economics to estimate the social cost of carbon and evaluate climate policies. For this
comparison, we use damage ratio estimates from the two latest versions of the DICEmodel: DICE-
2023 (Barrage and Nordhaus, 2024) and DICE-2016 (Nordhaus, 2018).

For benchmarking, we focus on three scenarios from the DICE model: baseline, cost-benefit
optimal, and 2 ◦C target. The baseline scenario in DICE assumes a 3.6 ◦C global temperature
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increase by 2100 (Barrage and Nordhaus, 2024), which aligns broadly with the SSP 7.0 scenario
(4.1 ◦C by 2100). The cost-benefit optimal scenario projects a 2.6 ◦C rise by 2100 (Barrage and
Nordhaus, 2024), corresponding to SSP 4.5 (2.63 ◦C by 2100). Lastly, the 2 ◦C target scenario
assumes a 2 ◦C limit on warming by 2100 (Barrage and Nordhaus, 2024), which is comparable to
SSP 2.6 (1.76 ◦C by 2100) (Riahi et al., 2017). However, caution is warranted, as the narratives
underlying the DICE scenarios differ from those of the SSP framework, and here we only focus on
temperature alignment. For a detailed discussion of these narratives, see Barrage and Nordhaus
(2024).

Figure A presents a comparison between our simulated damage ratios (Section 3.2.2) and
the DICE estimates. Since DICE projections are provided at five-year intervals, we apply spline
interpolation to convert them to annual values for benchmarking. Our mean projected damage
ratios align more closely with DICE-2016 estimates in the early projection horizon but fall below
them in later years. Across the entire horizon, our projections are also lower than those from DICE-
2023. However, the estimated damage ratios from both DICE-2016 and DICE-2023 generally fall
within the 5th–95th percentile prediction intervals of our simulations in the corresponding SSP
scenarios, suggesting that our projections encompass their estimated damage paths.

However, caution is warranted when interpreting these benchmarking results. Firstly, the
DICE model estimates global climate impacts, whereas our analysis focuses on localised impacts
(specifically, Australia). Given the regional heterogeneity in climate risks, economic structures,
and infrastructure profiles, differences between the DICE projections and our results are antici-
pated. Secondly, the DICE model captures the cumulative, long-term economic impacts of global
warming using a quadratic damage function (Barrage and Nordhaus, 2024), whereas our simula-
tions focus on the instantaneous impacts of natural catastrophe events, which are more relevant
for general insurance applications. We do not account for chronic climate change effects. This
distinction may explain the higher damage ratios projected by the DICE model, particularly in the
later projection horizon, where cumulative climate impacts on economic outputs become more
pronounced.
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Figure A: Comparison of projected economic damage ratios: Climate-dependent DFA (solid lines), DICE-
2023 (circled markers), and DICE-2016 (triangular markers)
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