

Actuaries Institute
ABN 69 000 423 656
Level 2, 50 Carrington Street, Sydney NSW 2000
P +61 (0) 2 9239 6100 | actuaries.asn.au

Yes we GAN: Adapting generative models for
predictive modelling with multivariate response

Prepared by Hugh Miller, Justin Sik Kwok Wong and Callum Sleigh

Presented to the Actuaries Institute
2025 All-Actuaries Summit
11-13 June 2025

This paper has been prepared for the Actuaries Institute 2025 All-Actuaries Summit.

The Institute’s Council wishes it to be understood that opinions put forward herein are not
necessarily those of the Institute and the Council is not responsible for those opinions

This paper uses unit record data from Household, Income and Labour Dynamics in Australia Survey,
HILDA. HILDA is conducted by the Australian Government Department of Social Services (DSS). The
findings and views reported in this paper, however, are those of the author[s] and should not be
attributed to the Australian Government, DSS, or any of DSS’ contractors or partners. DOI:
10.26193/R4IN30.

© Hugh Miller, Justin Sik Kwok Wong, Callum Sleigh

https://actuaries.sharepoint.com/sites/MarketingCommsTeam/Shared%20Documents/General/06.%20Brand/03.%20Templates/Letter%20Head/actuaries.asn.au

Yes we GAN 2

Abstract
Much recent attention has been given to generative AI models, but most of this is devoted to
‘human-centric’ outputs such as text or image generation. Surprisingly little research has
been focused on other types of generative tasks on structured data, such as prediction and
simulation of multivariate responses. Our paper aims to rectify this.

Multivariate prediction and simulation is a common task with a wide variety of applications.
For instance, actuarial microsimulation projects make predictions for people over multiple
time periods, simulating a wide set of outcomes at each step. Such simulation is complex,
since the value of one outcome will correlate with others at the same timepoint, meaning
that intricate conditional sub-models are typically required.

We propose some novel forms of Generative Adversarial Networks (GANs) and Variational
Autoencoders (VAEs) designed to make accurate multivariate predictions that preserve
these interdependencies across outcomes. A single AI model can then replace dozens of
sub-models. Such a setup has the potential to greatly simplify modelling, as well as
improve speed by leveraging modern AI computational hardware.

Results suggest good performance of these models, on both simulated and real-life
datasets. Stability and speed were slightly better for the VAE model, and most accurate
generation varied between the two models. Moreover, once the networks are fit,
simulations can be generated very quickly; millions of rows per minute. We include a
discussion of our experimentation with model structures and challenges encountered in
constructing the models. Overall, the approach is promising, with simulated data that is
statistically similar to real data in distribution, including capturing complex interactions
between variables.

Keywords: Deep leaning, AI, multivariate prediction, generative adversarial networks,
variational autoencoders, structured data

1 Introduction

1.1 Modern AI

To say that there is significant recent interest in AI models is an understatement. The paper by Vaswani
et al. (2017) introducing transformer models into neural networks has generated over 170,000 citations
within eight years. Models based on neural network designs have grown in complexity, data input, and
training time. We use the term ‘AI models’ relatively loosely in this paper but intend it to mean any
relatively complex network-based model.

Much of this attention (rightly) focuses on areas where computer models have traditionally done poorly,
and AI models have taken rapid strides – such as audio, vision and natural language data. This progress
covers rapid developments for both the discriminative applications (e.g. identifying the number of cars in
an image) of AI models, as well as the generative applications (e.g. generating a picture of a traffic jam).

Relatively less attention has been given to tabular data applications – where data is structured in rows
and variables. This is partly because existing tools for modelling tabular data are good (and are often
better than neural network structures), but also because AI models tend to work best when dealing with
a large number of variables with similar behaviours (e.g. a million pixels, all working on a RGB scale),
rather than the heterogeneity we often see in tabular data. But there are a range of applications to
tabular data where modern AI models offer strong possibilities and it is useful to understand both the
potential and the pitfalls of these applications.

One area we explore is the situation of multivariate response, with interactions between response
variables. By this we mean:

▪ There are at least two outcomes of interest that need modelling (for example, counting both the
number of cars and the number of red cars in an image)

▪ There are dependencies between the two (for example, the number of red cars cannot be greater
than the number of cars).

Yes we GAN 3

In standard predictive modelling, this would require sub-models to capture separate outputs and
appropriate design to preserve the interactions. But modern generative methods offer the possibility of
simultaneously generating multiple responses, with interdependence. An obvious example is modern
image generators, where each pixel colour is an output. These are dependent on surrounding pixels, and
they are generative (can produce multiple different pictures from similar prompts). Microsimulation
models (introduced below) are one area with significant opportunity to benefit from more automated
approaches that can leverage these properties.

Borisov et al. (2022) provides a recent survey on deep learning for tabular data including many
references, including a range of open challenges – we do not attempt to replicate this broad perspective
of existing work here. Our approaches perhaps most closely align with approaches to variable
imputation, in that we effectively recast generative prediction as a type of vector completion. Relevant
references include Yoon et al. (2018), Nazabal et al. (2020), Yoon et al. (2020), Telyatnikov and
Scardapane (2023) and Sun et al. (2023).

1.2 Microsimulation models

Microsimulations are models that project at a very granular level – typically at the level of an individual
person. We give some examples of ‘actuarial’ microsimulations to give a flavour:

1. Australian welfare – The Priority Investment Approach (PIA) model, managed by the
Commonwealth Department of Social Services. This tracks the long-term welfare costs of
Australians based on currently known factors such as demographics, benefit history and family
structure.1

2. Veterans affairs – The Department of Veterans’ Affairs Priority Investment Approach – Veterans,
which tracks conditions and service needs for people receiving support from the DVA.2 (for
example, here).

3. New Zealand adult population – The New Zealand Ministry of Social Development manages a
social outcomes model for adults. 3

4. NSW human services – The NSW investment approach for human services, which projects
outcomes and service use over 20 years for vulnerable young people and their families.4

5. Disability support – The National Disability Insurance Scheme (NDIS) has developed a
microsimulation model to improve the accuracy of NDIS projections.5

6. NZ child protection – Oranga Tamariki built a Children’s Wellbeing model, which tracks movements
in wellbeing along with government service usage.6

We refer to these as ‘actuarial’, primarily because actuaries have been heavily involved in their
construction. In practice these will strongly resemble microsimulation models built more broadly across
economics, computer science and other domains. Terminology can also vary – sometimes
microsimulations are referred to as ‘agent-based models’ or even ‘digital twins’ (Rasheed et al., 2020,

1 https://www.dss.gov.au/australias-approach-social-investment
2 https://www.dva.gov.au/newsroom/media-centre/departmental-media-releases/dva-wins-award-
business-innovation
3 A recent technical report is at https://www.msd.govt.nz/documents/about-msd-and-our-work/publications-
resources/research/benefit-system/2023-social-outcomes-modelling-technical-report.pdf
4 https://www.nsw.gov.au/community-services/investment-approach-for-human-services
5 See Section 3.5 of the 2023-24 AFSR, https://www.ndis.gov.au/media/7358/download?attachment
6 https://orangatamariki.govt.nz/assets/Uploads/About-us/Research/Research-seminars/February-2020/A-
Health-Case-Study-using-the-Childrens-Wellbeing-Model.pdf

https://www.dva.gov.au/newsroom/media-centre/departmental-media-releases/dva-wins-award-business-innovation
https://www.dss.gov.au/australias-approach-social-investment
https://www.dva.gov.au/newsroom/media-centre/departmental-media-releases/dva-wins-award-business-innovation
https://www.dva.gov.au/newsroom/media-centre/departmental-media-releases/dva-wins-award-business-innovation
https://www.msd.govt.nz/documents/about-msd-and-our-work/publications-resources/research/benefit-system/2023-social-outcomes-modelling-technical-report.pdf
https://www.msd.govt.nz/documents/about-msd-and-our-work/publications-resources/research/benefit-system/2023-social-outcomes-modelling-technical-report.pdf
https://www.nsw.gov.au/community-services/investment-approach-for-human-services
https://www.ndis.gov.au/media/7358/download?attachment
https://orangatamariki.govt.nz/assets/Uploads/About-us/Research/Research-seminars/February-2020/A-Health-Case-Study-using-the-Childrens-Wellbeing-Model.pdf
https://orangatamariki.govt.nz/assets/Uploads/About-us/Research/Research-seminars/February-2020/A-Health-Case-Study-using-the-Childrens-Wellbeing-Model.pdf

Yes we GAN 4

provides a broad perspective on progress and opportunities of digital twin models). To give a sense of
this broader environment:

▪ Research teams at the Australian National University have built and maintained microsimulations
related to tax and transfer policy over many years.7

▪ Agent-based models were used to model the transmission of COVID-19, and the impact of policy
settings during the pandemic (Chang et al., 2020).

▪ Agent-based models are used for modelling systems such as court systems of hospital emergency
departments (Moyaux et al., 2023).

Such models have a range of potential applications. They can be used for system management –
providing a long-term view of trends and the impact of policy intervention. They can also be used for
scenario modelling and testing the impact of changes in a complex system. They are also valuable for
monitoring and evaluation – understanding the impact of different interventions for cohorts within the
whole, and converting results to a longer-term impact. This versatility helps explain their popularity.

While such models are common, we comment:

▪ Building and maintaining microsimulations can be expensive – The process is time-consuming.
For example, the PIA model cost $2m per year to update and run.8 Much of the cost relates to the
complexity associated with many model components. Separate models are required to model the
evolution of benefit status, household status, payment levels, partial capacity to work status etc.
These must be built and then validated to check they interact together.

▪ Best practice is still evolving – We have seen a range of approaches to build and validate models.
Often these too are impeded by the time required (e.g. the cost of refitting on older data to run a
proper back-test).

▪ Construction is often quite bespoke – This is natural given the variety of underpinning data and
context for building the models. Such bespoke construction can limit transferability.

▪ Models are typically CPU-bound, running on traditional statistical code – For many projects this
means long projection runs (often measured in tens of hours) to apply to the full population. Modern
AI approaches recognise the value of GPU-based computation, when processes can be neatly split
into pieces (such as running the projection on different cohorts).

Our current research seeks to overcome these limitations while retaining good predictive performance.
This would bring clear benefits. Building models would be significantly cheaper, saving (often the
taxpayer) money. It would also encourage more organisations to build and engage with such models,
allowing more evidence-based policy.

1.3 Structure of this paper

The remainder of the paper is structured as follows:

▪ Section 2 covers the formal problem definition, including notation

▪ Section 3 describes our approach (model setup) and datasets

▪ Section 4 provides results

▪ Section 5 provides discussion

▪ The Appendix provides further tables and plots of results, to reduce the length of the paper’s main
sections.

7 PolicyMod is a recent version of this, https://csrm.cass.anu.edu.au/research/publications/policymod-
microsimulation-model-australian-tax-and-transfer-system-december
8 https://www.tenders.gov.au/Cn/Show/c1a94502-3ecb-43d0-ad25-01aa900faad1

https://csrm.cass.anu.edu.au/research/publications/policymod-microsimulation-model-australian-tax-and-transfer-system-december
https://csrm.cass.anu.edu.au/research/publications/policymod-microsimulation-model-australian-tax-and-transfer-system-december
https://www.tenders.gov.au/Cn/Show/c1a94502-3ecb-43d0-ad25-01aa900faad1

Yes we GAN 5

Our paper (particularly Section 3) assumes a basic knowledge of neural network construction (e.g.
defining layers of hidden neurons) and how networks are traditionally trained (e.g. backpropagation).
Many introductory discussions are available, such as Chapter 11 of Hastie et al. (2009). We aim to make
sections 4 and 5 readable for those less interested in the detail of formulae and model construction.

2 Problem description

For convenience we will refer to our unit of modelling as a ‘person’. Suppose our microsimulation has 𝑝
‘dynamic’ variables 𝑋1,𝑡, 𝑋2,𝑡 , … , 𝑋𝑝,𝑡 that are evolving non-deterministically for each person that we
observe at time 𝑡. Our task is to estimate these variables at the next timestep 𝑡 + 1. Assume also we
have ‘static’ variables 𝑆1, 𝑆2, … , 𝑆𝑞 that are constant for an individual (e.g. sex) or evolve deterministically
(e.g. age). Later, we also use 𝑍𝑗 variables to donate random noise (in the case of GAN models) and latent
variables (in the case of VAE models).

We can express our task as estimating the following distribution 𝑓:

𝑓(𝑋1,𝑡+1, 𝑋2,𝑡+1, … , 𝑋𝑝,𝑡+1|𝑋1,𝑡, 𝑋2,𝑡, … , 𝑋𝑝,𝑡 , 𝑆1, 𝑆2, … , 𝑆𝑞)

The key complicating factor is that these variables are not independent; for example if a person enters
hospital, that changes their probability of also entering welfare. This non-independence creates a
challenge.

The default approach for many existing microsimulation models is to treat this as a chained conditional
probability problem. First estimate the distribution for 𝑋1,𝑡+1

𝑓(𝑋1,𝑡+1|𝑋1,𝑡, 𝑋2,𝑡, … , 𝑋𝑝,𝑡 , 𝑆1, 𝑆2, … , 𝑆𝑞)

Then estimate 𝑋2,𝑡+1 conditional on 𝑋1,𝑡+1 (as well as the other values at time 𝑡):

𝑓(𝑋2,𝑡+1|𝑋1,𝑡 , 𝑋2,𝑡 , … , 𝑋𝑝,𝑡 , 𝑆1, 𝑆2, … , 𝑆𝑞, 𝑋1,𝑡+1)

This can be continued, estimating each variable in sequence. The creates the long list of sub-models
described in the previous section. This structure can be beneficial (a lot of care can go into the
construction of components, and expertise and subject matter knowledge embedded in various parts of
the design), but is labour intensive.

A second complicating factor is that we are genuinely interested in distributions, not just averages for
our vector. Since we are simulating, we need the projection to take plausible different values. This is
more challenging than most machine learning approaches that focus on a particular metric (such as the
mean) without regard for distribution.

3 Approach

3.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) were developed in 2014 by Ian Goodfellow and colleagues
(Goodfellow et al., 2020), with the original idea arising from a bar discussion.9 They have proven a
popular way to train networks with generative applications. The underlying aim is to generate plausible
synthetic versions of real data – that is, a generative task. A GAN does this by training two networks (see
Figure 3.1) that effectively compete with each other:

▪ The generator converts some random noise (often the same dimension as the target vector) into a
fake data vector which is intended to look like real data.

▪ The discriminator network then accepts data (fake or real) and attempts to determine whether the
data is real or synthetic.

9 https://www.technologyreview.com/2018/02/21/145289/the-ganfather-the-man-whos-given-machines-the-
gift-of-imagination/

https://www.technologyreview.com/2018/02/21/145289/the-ganfather-the-man-whos-given-machines-the-gift-of-imagination/
https://www.technologyreview.com/2018/02/21/145289/the-ganfather-the-man-whos-given-machines-the-gift-of-imagination/

Yes we GAN 6

The performance of the discriminator model is then used to train the two networks; the generator
attempts to trick the discriminator (lowering accuracy of the final binary choice), and discriminator
attempts to improve the accuracy.

Figure 3.1 – Traditional structure of a GAN

We tailor this setup in a few ways to make it suitable for our microsimulation design, as shown in Figure
3.2.

Figure 3.2 – Modified GAN structure for a microsimulation setup

The main features of our revised structure are:

▪ The generator network accepts time 𝑡 variables (dynamic and static) in addition to the noise
variables 𝑍𝑗. They thus inform the generation, but are not themselves generated

Z1
Z2
Z3
…

Latent
(noise)
input

Generator network Fake data

Real data

Discriminator
network

Real or
fake?

X1*
X2*
X3*
…

X1
X2
X3
…

Training

Z1
Z2
Z3
…

Latent
(noise)
input

Generator network Fake data

Real data

Discriminator
network

Real or
fake?

Training

Xt1
Xt2
Xt3
…

S1
S2
…

X*
t+1,1

X*
t+1,2

X*
t+1,3
…

Xt1
Xt2
Xt3
…

S1
S2
…

X*
t+1,1

X*
t+1,2

X*
t+1,3
…

Xt1
Xt2
Xt3
…

S1
S2
…

Xt+1,1
Xt+1,2
Xt+1,3

…

S1

Xt1 Time t variables

Fixed variables

Time t+1 variablesXt+1,1

Yes we GAN 7

▪ We add the time 𝑡 variables (dynamic and static) to the generated samples of 𝑡 + 1 variables. The
discriminator can then judge the time 𝑡 + 1 variables generated with reference to the time 𝑡
variables. In this way the discriminator can check the compatibility between time 𝑡 and 𝑡 + 1
variables

The generator network, once trained, can be used for generation in the simulation. Each time step we
can take the current information with respect to a person, plus some randomly generated noise, to
generate plausible 𝑡 + 1 data.

For the formal loss functions, there are two loss functions applicable to the training based on cross-
entropy (equivalent to traditional loss functions used elsewhere, such as logistic regression), with the
‘response’ corresponding to an indicator for whether the observation was real. For the discriminator,
we first calculate the discriminator’s probability of observations being real, 𝑝𝑟𝑒𝑎𝑙, for both real and
generated (fake) data and calculate the loss to minimise as:

𝐿𝑑𝑖𝑠𝑐 = −(∑ log (𝑝𝑟𝑒𝑎𝑙)

𝑖,𝑟𝑒𝑎𝑙 𝑜𝑏𝑠

+ ∑ log (1 − 𝑝𝑟𝑒𝑎𝑙)

𝑖,𝑓𝑎𝑘𝑒 𝑜𝑏𝑠

)

For the generator, we focus on the discriminator’s predictions for the fake data and try to encourage
high probability with the loss function:

𝐿𝑔𝑒𝑛 = −(∑ log (𝑝𝑟𝑒𝑎𝑙)

𝑖,𝑓𝑎𝑘𝑒 𝑜𝑏𝑠

)

Both models can be improved through backwards propagation of the loss functions on batches of data,
as is standard for neural network models.

3.2 VAEs

Variational Autoencoders (VAEs) represent another popular type of neural network structure, first
proposed by Kingma & Welling (2013). As the name suggests, they are part of a broader family of
autoencoder models that seek to understand data structures by encoding them into (usually lower-
dimensional) spaces. Their standard design is shown in Figure 3.3.

Figure 3.3 – Traditional VAE structure

An encoder network converts input points into a latent (typically lower-dimensional) space. Importantly
this space is a distribution (each 𝑍𝑗 is most commonly Gaussian described by its mean and standard

Z1
Z2
Z3
…

Real data
input

Encoder
network

Latent
space

Decoder
network

X1*
X2*
X3*
…

X1
X2
X3
…

Generated
data

Training

Yes we GAN 8

deviation 𝜇𝑗 and 𝜎𝑗 respectively) rather than specific numbers. The lower-dimensional space is intended
to capture the essence of the data, and variable relationships. The decoder network converts a selection
(randomly drawn selections from the latent space) from that space back into the data space, creating
generated values. Training the networks relies on a combined loss function – examining both the
difference (error) between real and generated data, as well as the distance of the latent space from a
simple Gaussian distribution.

𝐿𝑜𝑠𝑠 = 𝐸𝑟𝑟𝑜𝑟(𝑥, 𝑥∗) + 𝛽𝐷𝐾𝐿(𝑍,𝒩(0,1))

The first term, the reconstruction error, seeks to make generated values similar to the input, whereas the
second term is the Kullback–Leibler (KL) divergence between the distributions created for the latent
space and the standard normal distribution. The KL term ensures a distributional smoothness, which
skews the model away from overfitting. The 𝛽 term is selected and controls the relative balance between
the two components. The reconstruction error function for the first term is most commonly squared
error. If 𝑓 and 𝑔 are the encoder and decoder functions respectively, this becomes (with 𝑃 the number of
dimensions of 𝑥𝑖𝑗, 𝑁 the number of observations being considered, and 𝑔𝑗 the 𝑗th component of the
decoder output vector):

𝐸𝑟𝑟𝑜𝑟(𝑥, 𝑥∗) = 𝐸𝑟𝑟𝑜𝑟 (𝑥, 𝑔(𝑓(𝑥))) =
1

𝑁𝑃
∑∑[𝑥𝑖𝑗 − 𝑔𝑗(𝑓(𝑥𝑖))]

2

𝑗𝑖

The KL divergence is calculated as:

−
1

2
∑(1 + log(𝜎𝑗

2) + 𝜇𝑗
2 + 𝜎𝑗

2)

𝑗

The underlying theory for VAEs, and the derivation of loss and fitting methods, rely on relatively deep
Bayesian theory. Interested readers are referred to Kingma and Welling (2019) – our paper focuses on the
modification and results of the VAE use.

As with GANs, it is possible to modify the model structure to make it amenable to our problem,
illustrated in Figure 3.4. In this case the encoder network takes all the data (time 𝑡, time 𝑡 + 1 and fixed
variables), but the latent space is intended to only capture the nature of the time 𝑡 + 1 variables. We
then re-supply the time 𝑡 and fixed variables as inputs to the decoder network, so that it seeks to
generate new data conditional on these inputs. The final generated data again has a copy of the time 𝑡
and fixed variables to complete the generation.

Figure 3.4 – Modified VAE structure for a microsimulation setup

Z1
Z2
Z3
…

Real data
input

Encoder
network

Latent
space

Decoder
network

Generated
data

Xt1
Xt2
Xt3
…

S1
S2
…

Xt+1,1
Xt+1,2
Xt+1,3

…
Xt1
Xt2
Xt3
…

S1
S2
…

Xt1
Xt2
Xt3
…

S1
S2
…

X*
t+1,1

X*
t+1,2

X*
t+1,3
…

S1

Xt1 Time t variables

Fixed variables

Time t+1 variables

Latent distribution

Xt+1,1

Z1

Yes we GAN 9

3.3 Extensions and variations

A number of steps are required as part of the implementation of a GAN or VAE, covered below.

Standardisation of continuous variables

Continuous variables can work on very different scales, which can be a challenge to network models.
Further, many continuous variables often have very skewed distributions with extreme outliers. This may
be challenging to model as such outliers may have undue leverage (depending on the loss function used)
and thus cause a poor fit. Extremely large values may also lead to the exploding or vanishing gradient
problem, which can cause neural networks to collapse. Standardisation generally improves model fits
and convergence.

We:

▪ Standardise all continuous variables by subtracting the mean and dividing by the standard deviation.

▪ Exclude a small number of outliers in our real-life dataset from the calculation of mean and standard
deviation in our real-life example (but keep the outliers in the data – we just ignore them when
choosing scaling parameters). This ensures that the bulk of the distribution is not too squashed
around zero.

There are alternative approaches to transformation (for example, using cumulative density functions to
convert continuous variables to well-behaved distributions), that we have not pursued in this paper.

Binary and categorical variables

Most neural network designs assume all variables are numeric.

General tabular datasets (and our real-life example) will have a variety of distributions, including
categorical variables. For categorical variables we apply one-hot encoding (a variable with 𝐾 categories
are converted to 𝐾 0-1 variables, one for each level), as is often done for statistical modelling. We treat
binary (or ‘flag’) variables as categorical variables (with two response categories), so these variables are
also one-hot encoded, in this case into two 0-1 variables.

For the GAN model, we use the Gumbel-Softmax distribution (see Maddison et al., 2016 and Jang et al.,
2016) on each group of one-hot encoded variables as a final layer of generation. This preserves the
required differentiability and randomness to ensure that model optimisation (via backpropagation) is
still possible. If 𝜋𝑘 denote the outputs corresponding to each of the levels of the one-hot encoded
variable (analogous to the linear predictor in multinomial regression), then our last layer converts these
to probabilities:

𝑝𝑘 =
exp([log(𝜋𝑘) + 𝑔𝑘]/𝜏)

∑ exp([log(𝜋𝑗) + 𝑔𝑗]/𝜏)
𝐾
𝑗=1

 for 𝑘 = 1,… , 𝐾

Here the 𝑔𝑘 are samples from the Gumbel(0,1) distribution and 𝜏 is the ‘temperature’; a higher value will
tend to encourage a more even spread across categories. The final generation for the variable is
sampled from these probabilities. For the GAN we also applied temperature annealing, where by the
temperature 𝜏 starts at a higher level (more randomness) and is allowed to cool over the model training.

For the VAE model we still use the Gumbel-Softmax distribution but applied somewhat differently. For
defining the reconstruction error with the main loss function, we use the derived probabilities directly
(rather than sampling from them), but still sample for the eventual generation stage.

Yes we GAN 10

We also modify the loss function so that it uses cross-entropy for the 0-1 variables arising from
categorical variables rather than squared error. If 𝑃1 and 𝑃2 are the number of continuous and one-hot
encoded variables respectively, the reconstruction error term for the VAE becomes:

𝐸𝑟𝑟𝑜𝑟(𝑥, 𝑥∗) =
1

𝑁𝑃1
∑ ∑[𝑥𝑖𝑗 − 𝑔𝑗(𝑓(𝑥𝑖))]

2
+

𝛾

𝑁𝑃2
∑ ∑ −𝑥𝑖𝑗 log(𝑝𝑖𝑗)

𝑗 𝑜𝑛𝑒−ℎ𝑜𝑡𝑖𝑗 𝑐𝑡𝑠𝑖

The 𝛾 term is a tuning parameter that balances the relative weight of the categorical and continuous
components of the model.

Mixed distributions

Our real-life dataset also contains mixed distribution variables, which are continuous but have point
masses at certain levels. In our case these are typically income variables – if a person is not employed
then their weekly wages variable is zero (a point mass), otherwise will follow a continuous distribution.

Again there are various options to handle (including making no adjustment and hoping the model will
correctly reflect the shape, perhaps with some rounding). Our approach is to add an additional binary
variable that captures when the mixed distribution variable is equal to the point mass, and modelling the
continuous distribution afterward. Under this setup there is a final check applied in the generation step
where if the point mass binary is one, the continuous portion is forced to the value of the point mass
(and the corresponding flag forced to one).

For the VAE, this means that a mixed distribution is encoded in both the continuous and categorical
portions of the reconstruction error term. This could potentially overweight the variable’s role in the
model. We have not tested options for ameliorate this; one possibility is to introduce indicators so only
one of the categorical or continuous loss portions would be active at a time.

Interdependence between individuals

In many microsimulations data will often show interdependence between individuals. For instance,
people in the same household may move location, or see changes in household income, at the same
time. This can in theory be modelled by adding interdependence between data rows.

We consider this beyond the scope of this paper, and do not make any explicit adjustment for
interdependence between individuals. However, the modified network structures could in principle be
used to extend to these cases.

For example, consider the household income variable, which is effectively shared across household
members. Household income can be added as a dynamic variable (along with potentially other
household variables such as household size) and then two versions of the model fit:

▪ The first model is built as usual and applied to the first member of a household, setting household
income in time 𝑡 + 1.

▪ The second model is trained with household income in time 𝑡 + 1 as a static (already known)
variable. This is applied to other household members, effectively conditioning on household income.

While this requires more models, they would share most of the same model structure and could even
share training parameters – so there would be some efficiencies.

Missing variables and imputation

After data cleaning and preparation, no missing variables exist in our simulated and real-life datasets
used. However, we note that missing variables may be addressed by:

▪ Formally recognising missingness:

– For categorical variables, missing levels may be treated as another category

– For continuous variables, missing values may be treated as a mixed distribution. All missing
values are encoded as a separate value (e.g. the mean) and producing a flag to capture when

Yes we GAN 11

this variable is missing. Then, this variable may be treated as a mixed distribution with a point
mass at the encoded missing value

▪ Variable imputation – We discussed in Section 1.1 that our model design bears some resemblance
to missing variable imputation (where our ‘missing’ values are variables at time 𝑡 + 1). Formal
imputation models can be built to run first, or the main models can be designed to be tolerant to
missing values in input variables.

The first approach for continuous variables has the potential to bias distribution towards whatever point
is selected for missing values; we suspect some form of imputation will produce better results.

Multiple time steps

Our model description focuses on estimating variables at time 𝑡 + 1 given status at time 𝑡. Generally this
is then extended to longer timeframes iteratively.

There is an alternative approach to modelling 𝑡 + 𝑆 variables from time 𝑡, provided the original
longitudinal dataset has at least 𝑆 + 1 time steps. We can simply replace the 𝑡 + 1 variables in the
model setup with 𝑡 + 𝑆 and so skip to that time in one model pass. This is less useful in many cases
(where the full time series is desired), but is a powerful way to test whether the iterative single steps are
working well – we can generate variables at time 𝑡 + 𝑆 both ways (via 𝑆 single step and via one single
step) and test whether the single step provides substantially better generation.

We test these variants and present results for 𝑆 = 3 in Section 4.

3.4 Assessing the performance of models

Some care is needing in diagnostics since we are testing multivariate distributional generation, rather
than more standard mean prediction problems. We used a range of tools:

▪ Discriminator models comparing real and fake data – Our main diagnostic takes inspiration from the
GAN itself. Using holdout data, we create a stacked dataset of generated and actual rows (variables
being all the static, dynamic 𝑡 and 𝑡 + 1 variables), with response variable whether the row is actual
data. We then fit a predictive model to see how well it can separate the real and generated rows. For
this, we used a gradient boosting machine (GBM) with trees A superior generation model will register
as poorer predictive performance. We measure the overall fit of the GBM discriminator using the
gains ratio10; therefore, a superior GAN or VAE will achieve a lower gains ratio for the GBM
discriminator model.

▪ Other distributional checks We also assess some simple metrics, including:

– One-way histograms, comparing generated distribution to actual

– Two-way heatmaps, comparing generated distribution to actual

– Overall goodness-of-fit statistics, such as the Kolmogorov-Smirnov statistic for continuous
variables and total variation distance for categorical variables.11

3.5 Implementation details

Both the GAN and VAE were implemented in Python using PyTorch. Standard functions from scikit-learn
were used to clean and pre-process the modelling data.

10 A gains chart is a measure of how well high predicted probabilities align with positive responses – see for
example https://www.listendata.com/2014/08/excel-template-gain-and-lift-charts.html. Our gains ratio
measures the scaled area under the gains chart, with 1 being a perfect model (all positive responses
identified without conflating with any negative responses) and 0 being a random model (no distinguishing
between positive and negative responses).
11 The sdmetrics python library, https://docs.sdv.dev/sdmetrics, contains a good range of such tests.

https://www.listendata.com/2014/08/excel-template-gain-and-lift-charts.html
https://docs.sdv.dev/sdmetrics

Yes we GAN 12

All models were trained on a workstation with the following specifications:

▪ CPU: intel i7-12700T

▪ GPU: NVIDIA T1000 8GB

▪ RAM: 128 GB

Models were trained on the GPU using CUDA. The Quadro T1000 card (released in 2021) is relatively
entry-level by modern standards.

Some aspects of our diagnostics (the GBM models for testing model effectiveness) and other
diagnostics were implemented in R.

The results presented choose better performing models amongst a significant amount trial and error
(even for final parameters, performance varied on differently seeded runs, particularly for the GAN. The
examples related to the real-life dataset included dozens of runs with different parameters and seeds.
Some observations from the experimentation are covered in the Section 5 discussion. Additionally, there
is every chance that further improvements are possible with improvements to the model setup. In this
sense, we do not claim that our results are optimal or final.

The presented GAN model structure is made up of:

▪ Generator structure: Linear(input, 128) → ReLU → Linear(128, 64) → ReLU → Linear(64, 32) → ReLU
→ Linear(32, output)

▪ Discriminator structure: Linear(input, 128) → LeakyReLU → Linear(128, 64) → LeakyReLU →
Linear(64,1) → Sigmoid

▪ Parameters: training 200 epochs, 128 batch size, 0.0001 generator learning rate, a 0.001
discriminator learning rate, and 𝜏 annealing from 2 to 0.5.

The presented VAE model structure:

▪ 10 latent dimensions

▪ Encoder structure: Linear(input, 128) → BatchNorm1d → ReLU → Linear(128, 128) → BatchNorm1d
→ ReLU → Linear(128, 128) → BatchNorm1d → ReLU → Linear(128, output) → BatchNorm1d →
Tanh → Linear(128, 10)

▪ Decoder structure has a slightly unusual last layer, where three different final layers are defined and
then averaged.12

▪ Other parameters: 500 training epochs, 128 batch size, 0.01 learning rate, 𝛽=1, 𝛾 = 0.02, and 𝜏=0.2

Both models used Adam optimizer and network weights initialized using normal Xavier initialization.

12 There is no particular reason for this setup

Linear(input + 10, 128) → BatchNorm1d →Tanh
Linear(128, output)
Linear (128, output) →softmax
Linear(128, output)→ sigmoid

Avg.

Yes we GAN 13

4 Results

4.1 Small simulated example

4.1.1 Setup

We first demonstrate results on a simulated baby example, where the underlying data generation can be
known and no explicit time dimension (instead we treat a subset of variables to be known – equivalent to
fixed and time 𝑡 information, and the others to be simulated as needed for the time 𝑡 + 1 variables)

Consider the setup of six-variables setup:

▪ 𝐷1, … , 𝐷6 are first generated from a multivariate normal distribution with means 0, standard
deviation 1, and correlation matrix:

[

1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

0.5 0.5 0.5
0.5 0.5 0.5
0.5 0.5 0.5

0.5 0.5 0.5
0.5 0.5 0.5
0.5 0.5 0.5

1 0.5 0.5
0.5 1 0.5
0.5 0.5 1]

▪ 𝑋1 = 𝐷1 + 4

▪ 𝑋2 = (𝐷2 + 2)2 + 4

▪ 𝑋3 = 4𝐷3

▪ 𝑋4 = 4𝐷4

▪ 𝑋5 = (𝑋1 − 5)2 + 𝑋2 − 2𝑋3 + (1.5𝐷5 + 1)2

▪ 𝑋6 = 0.5𝑋4 + 2sin(𝑋5/4) + 1 + 0.7𝐷6.

We assume 𝑋1 to 𝑋4 are the known variables and 𝑋5 and 𝑋6 the unknown. The unknown variables are
both non-linear and highly dependent on the known variables and each other. There are also hard
threshold – for instance the value of 𝑋2 cannot be below 4, and 𝑋5 cannot fall below the level of 𝑋2 −
2𝑋3.

Because of the simple correlation structure in the simulated data, visual inspection of scatter plots is
sufficient to get a good sense of how accurate the model has reproduced the data structure. In the plots
displayed in Figure 4.1, we show the original data in blue, overlaid with data generated by the model in
pink.

4.1.2 GAN results

Fitting the GAN for a dataset with 10,000 rows is very quick, and only took around a minute and half.
Furthermore, generating predictions from the fitted model is effectively instantaneous. We did notice
significant variation in the quality of the GAN model, depending on different weight initialisations for
starting optimisation. This variation in quality occurred even using normal Xavier initialisation.

To see how the generator and discriminator are balancing in our finalised model, we look at the average
discriminator prediction on ‘real’ data vs. ‘fake’ data created by the generator. On both these datasets,
the discriminator gives an average prediction of ~0.5 probability the data is ‘real’. This shows the
discriminator is very effectively ‘fooled’ by the generator.

As displayed in Figure 4.1, the GAN model, picks up a lot of the data structure well. In particular:

▪ Non-linearities are captured well, as can be seen by the sinusoidal pattern in 𝑋5 vs 𝑋6.

▪ In general, the spread of generated values appears reasonable – enough noise appears to be added
to the model. However, the model has slightly too little spread when looking at the plot of 𝑋4 vs 𝑋6.

▪ The generative model tends to respect the hard boundary conditions we imposed well. For example,
looking at the hard cutoff at 𝑋2= 4.

Yes we GAN 14

Figure 4.1 – Scatter plots: original data / generated data from GAN

Yes we GAN 15

Table 4.1 compares univariate statistics for the two generated variables, which are generally reasonable.
The slight biases in 𝑋6 (lower spread) are visible.

Table 4.1 – Univariate statistics for real and generated data, GAN

 X5 X6
Statistic Real Generated Real Generated
Mean 14.33 14.15 0.96 1.52
Mean abs. deviation 5.32 5.47 2.04 1.92
Std dev 8.42 8.72 2.92 2.76
Skewness 0.45 0.65 -0.02 0.05

4.1.3 VAE results

We get similar results for the VAE model – fitting the model takes about a minute, and sampling data
from the fitted model is essentially instantaneous. The VAE architecture seemed more stable than the
GAN architecture, in the sense that there was less variation in quality for different random weight
initialisations.

The correlations captured by the VAE are similar to the GAN, and are displayed in Figure A.1 in Appendix
A.1. Most of these are similar to the GAN, with the exceptions that the VAE is doing a worse job of
capturing the full spread of some variables. This can be seen in the plot of 𝑋4 vs 𝑋6 where the simulated
data has a narrower range of 𝑋6 values, throughout.

Visual inspection makes it slightly hard to see if the non-linear relationship between 𝑋5 and 𝑋6 is
captured by the VAE as well as the GAN. This can be confirmed by calculating the ‘Correlation Similarity’
metric13, which is 0.97 for both models (to two decimal places).

Univariate statistics are compared in Table 4.2. Results are similar to the GAN, with slightly less bias in
the mean and slightly less spread in 𝑋5.

Table 4.2 – Univariate statistics for real and generated data, GAN

 X5 X6
Statistic Real Generated Real Generated
Mean 14.33 13.68 0.96 1.20
Mean abs. deviation 5.32 4.86 2.04 1.91
Std dev 8.42 7.47 2.92 2.66
Skewness 0.45 0.57 -0.02 -0.15

4.2 Real-life data – HILDA longitudinal data

4.2.1 Introducing HILDA

The Household, Income and Labour Dynamics in Australia (HILDA) survey is a household-based study
and is the leading longitudinal survey in the country. It captures data across a range of domains,
including work, education and training, demographics, fertility and children, health and welfare usage. It
is a longitudinal dataset, captured each year since 2001 by the Melbourne Institute.

HILDA release 23 (results up to 2023) was used for this project. We use survey responses from 2017
onwards for modelling. Given in a row of data we require both time 𝑡 and 𝑡 + 1, this corresponds to five
years of data and 76,400 rows of data (with another 18,200 rows of data withheld and used as a holdout

13 For two synthetic variables 𝑆1, 𝑆2 and variables 𝑅1, 𝑅2 from the underlying real dataset, the Correlation
Similarity metric is defined to be 1 − 0.5 ∗ | 𝐶𝑜𝑟𝑟(𝑆1, 𝑆2) − 𝐶𝑜𝑟𝑟(𝑅1, 𝑅2)|, where 𝐶𝑜𝑟𝑟 is Pearson correlation. A
value of 1 indicates matching variable correlations.

Yes we GAN 16

dataset on our diagnostics). The survey data includes both responding persons (those members of a
household who responded to the survey) and enumerated persons (members of a household who did
not respond); we only use survey responses from responding persons.

HILDA is an appropriate dataset to use because it is:

▪ Longitudinal, meaning that the same respondent households answer the survey each year.
Therefore, time t+1 responses exist for modelling. Moreover, this allows for testing of model stability
and goodness of fit over a longer period of time (e.g. can test how well the model performs over a
period of three years)

▪ Contains variables similar to those typically used in microsimulation modelling, such as education,
labour and welfare.

▪ The data is of good quality and has undergone an extensive cleaning and imputation process. For
example, survey responses that are deemed implausible after intensive checking are removed.
Respondents who are unable to provide an answer to a question (for example, the dollar amount of
welfare benefits received in the year to date) have their responses imputed.14

We selected a subset of variables from HILDA that we thought would provide a challenging modelling
task across variable types and interdependences – see table Table 4.3. Of the 24 variables, two were
deterministic (age and sex), and the other 22 dynamic, of which six were continuous and the remainder
categorical. After one-hot encoding this was 74 dynamic variables, and after attaching 74 variables
relating to time 𝑡 + 1 the final full vector contained (2+74+74=) 150 variables.

14 Detailed information on HILDA and the data construction are in the regular user manuals, with the 2023
release available at
https://melbourneinstitute.unimelb.edu.au/__data/assets/pdf_file/0006/5166807/HILDA-User-Manual-
Release-23.0.pdf

https://melbourneinstitute.unimelb.edu.au/__data/assets/pdf_file/0006/5166807/HILDA-User-Manual-Release-23.0.pdf
https://melbourneinstitute.unimelb.edu.au/__data/assets/pdf_file/0006/5166807/HILDA-User-Manual-Release-23.0.pdf

Yes we GAN 17

Table 4.3 – Variables used from HILDA for modelling

HILDA
Variable ID Short descriptor Description

hhiage Age Age last birthday at date of interview

hgsex Sex Sex of respondent

mrcurr Marital status Current marital status

hhs3add SEIFA decile (location) SEIFA relative socioeconomic advantage/disadvantage decile 2021

hgndi NDIS flag NDIS-agreed support package

hglth Disability flag Long-term health condition, disability or impairment

cccinhh Children flag Respondent has children aged under 14 in the household

ccftb FTB flag Respondent receives family tax benefit

edhigh1 Education level Highest level of education attained

bncap Age pension flag Respondent currently receiving aged pension

bncapui Benefits amount Value of current weekly public transfers excluding family tax benefit, imputed

bnccrp Carer flag Respondent currently receiving carer payment

bncdsp DSP flag Respondent currently receiving disability support pension

bncdvaa DSP amount Value of latest disability support pension payments

bncnws Jobseeker flag Respondent currently receiving Jobseeker

bncpar Parent Payment
amount

Value of latest weekly parenting payment

tifefp Total annual income Total regular gross income in the last financial year, including transfers/welfare

wscei Weekly wages Current weekly gross wages and salary across all jobs, imputed

wscmtoj Multiple job flag Respondent is currently working in more than one job

es Employment status Respondent’s current employment status

esbrd Labour force status Respondent’s current labour force status

jbcasab Casual flag Casual worker

jbcmocc Change in job flag Occupation changed since last interview

rtyr Year retired Year retired

gh1 Health rating Self-assessed health (Excellent / Very good / Good / Fair / Poor)

losat Life satisfaction Respondent’s life satisfaction (varying from 0 to 10, where 0 is not satisfied and
10 is most satisfied)

4.2.2 GAN results on HILDA – single time step

The GAN model achieves a reasonable (but not spectacular) level of performance on the HILDA dataset.
The gains chart (Figure 4.2) shows a gains ratio of 0.71115, which shows that the generator is routinely
fooling the model, but there are still systematic differences detectable between the generated and
actual data.

15 Here a ratio of 0 means the discriminator model is randomly guessing between generated and real (so
cannot see a difference), and 1 means the model can perfectly identify generated data

Yes we GAN 18

Figure 4.2 – Gains chart on holdout data for selected GAN model. Gains ratio is 0.711

Note: A gains ration of 0 the model is randomly guessing between generated and real (cannot detect fakes), and the blue
line would sit at the 45 degree line. A ratio 1 means the model can perfectly identify generated data, and the blue line
would sit at the theoretical max gains.

The GBM reports relative variable importance, which gives guidance as to which variables are being
most used to distinguish between real and generated data. The top three are continuous variables:
Gross income, weekly wages and life satisfaction. Many detected misfits are potentially interactions
rather than one-way issues.

One-way comparisons generally look good. For categorical variables, Table 4.4 shows the Total
Variation Distance statistic16 (on hold-out data):

𝑇𝑉𝐷 = 1 −
1

2
∑ |𝑃𝑛 − 𝑄𝑛|

𝑁

𝑛=1

Where 𝑃𝑛 and 𝑄𝑛 are the proportions of real and simulated data from the GAN respectively, for a category 𝑛 of a variable
with 𝑁 categories. Scores are uniformly high (although some that tend to be highest are also the easiest to predict as they
change less over time). We have tended to observe when there are distributional differences it is more common for the
lower-frequency classes to be under-represented. Two of the poorer performing categorical variables are shown in the
Note: 1 represents perfectly matching distributions

Figure 4.3, that exhibit this pattern.

16 The leading “1 −” for the TVD and KS scores are not standard, but are used by the sdmetrics library and we
have retained. They have the effect of making 1 represent a ‘good’ distribution, rather than 0.

Yes we GAN 19

Table 4.4 – GAN Total variation distance goodness of fit statistic for categorical variables at time 𝑡 + 1

Categorical variable
Total variation
distance

Children flag 0.987

FTB flag 0.998

Education level 0.994

Age pension flag 0.993

Carer flag 0.999

DSP flag 0.999

Jobseeker flag 0.989

Multiple job flag 0.981

Employment status 0.961

Labour force status 0.968

Casual work flag 0.996

Change job since flag 0.998

Retired flag 0.999

Marital status 0.972

SEIFA decile 0.978

NDIS flag 0.998

Disability flag 0.888

Health rating 0.925

Note: 1 represents perfectly matching distributions

Figure 4.3 – GAN generated distributions for two categorical variables

For continuous variables, which tend to be harder to model, we also found that one-way distributional
comparisons were mixed. Table 4.5 shows the Kolmogorov-Smirnov statistic17 for continuous variables,
defined as:

17 See previous footnote

-

20%

40%

60%

80%

Pr
op

or
tio

n

Labour force status

Histogram for Labour force status

real synthetic

-
5%

10%
15%
20%
25%
30%
35%
40%
45%

Pr
op

or
tio

n

Self-assessed health

Histogram for Self-assessed health

real synthetic

Yes we GAN 20

𝐾𝑆 = 1 − sup
𝑥

|𝐹(𝑥) − 𝐺(𝑥)|

Where 𝐹(𝑥) is the empirical distribution function of the real data and 𝐺(𝑥) of the simulated data from
the GAN. Values closer to 100% indicate a superior fit. The Transfers and DSP payment variables are
artificially low due to their mixed distribution setup; for example the DSP fit has a good mean and point
mass at zero, but poor tail shape for the small fraction of non-zero values.

Table 4.5 – Kolmogorov-Smirnov goodness of fit statistic for continuous variables, GAN model

Continuous variable
Kolmogorov-Smirnov
statistic

Benefits amount(b) 0.272

DSP amount(b) 0.004

Parenting amount(b) 0.983

Total annual income 0.957

Weekly wages(b) 0.591

Life satisfaction 0.862

(a) 1 represents perfectly matching distributions.
(b) KS scores strongly affected by the handling of the mixed/skewed distribution

Figure 4.4 shows the frequency polygon and the quantiles for the Total annual income variable. We
regard the fit as good, given the inherent challenges in fitting continuous distributions.

Figure 4.4 – Frequency polygon and quantile plots for Total annual income

Note: Plots truncated at $300,000 / 80th percentile respectively for better visibility of important parts of the distribution

One interesting feature was a consistent failure to capture the top of the distribution for the life
satisfaction variable (scored on a 1 to 10 scale) – the synthetic data rarely generated a 10, which is
different to the actuals, as shown in Figure 4.5. We are unsure if the integer nature of the data, or its
boundedness, contribute to the misfit.

There is a substantial misfit for the value of transfers excluding family tax benefit. The model appears to
overpredict the proportion of the population who receive the family tax benefit, and of those who do
receive it, it appears to overpredict the amount.

-

5%

10%

15%

20%

25%

30%

- 100,000 200,000 300,000

Pr
op

or
tio

n

Gross income

Freq. polygon for Total annual income

real synthetic

-

20,000

40,000

60,000

80,000

100,000

- 20% 40% 60% 80%

G
ro

ss
 in

co
m

e

Quantiles

Quantiles for Total annual income

real synthetic

Yes we GAN 21

Figure 4.5 – Distribution of life satisfaction score, GAN model

Of particular interest is how interactions between variables are modelled. These are shown in a series of
heat plots below. We observe interactions are generally captured very well, despite being very awkward
two-way distributions to model:

▪ The relationship between age pension receipt and age (Figure 4.6)

▪ Weekly wages and labour force status (Figure 4.7), where those that are not in the labour force or
unemployed should not have weekly wages, plus a plausible distribution for those that are employed

▪ Weekly wages and total gross income (Figure 4.8), which has both a loose correlation plus a
distribution of total income for those with zero or low weekly wages (as people can have other
income apart from wages). The generated correlation is perhaps a little tighter than actual, but the
relationship is fairly well captured.

▪ Weekly wages and government transfers (Figure 4.9), where the ‘one or the other’ dynamic is well
captured.

Figure 4.6 – Receipt of age pension flag (dynamic) by age (deterministic). Legend shows number of
observations. Real distribution shown left, generated data to the right

-

10%

20%

30%

40%

1 2 3 4 5 6 7 8 9 10

Pr
op

or
tio

n

Life satisfaction

Histogram for Life satisfaction

real synthetic

Yes we GAN 22

Figure 4.7 – Wages (dynamic) by labour force status (dynamic)

Figure 4.8 – Weekly wages (dynamic) and total gross income (including transfers/welfare, dynamic)

Figure 4.9 – Weekly wages (dynamic) and transfers (excluding family tax benefit, dynamic)

Yes we GAN 23

4.2.3 GAN results on HILDA – three-year time step

Chained GAN model

We created a version of HILDA data over the same time interval but with a three-year timestep. This
resulted in a smaller dataset (time 𝑡 ranged from 2017 to 2020) with 46,138 rows in the training data and
10,908 rows in the holdout. We can then compare:

▪ The performance of a three year ‘chained’ GAN (applying three times successively), using the model
from section 4.2.2

▪ The performance of a three-year single step model, trained on the modified data.

We see a substantial deterioration in the overall performance of the GAN when chained. While some
deterioration is expected (chaining three years is intrinsically harder than a single step), it appeared
significant. The gains ratio rose from 0.711 (for one step ahead) to 0.927 – meaning that it was very easy
for the discriminator to spot generated records. The most important variables in the GBM discriminator
are weekly wages, total income and transfers, indicating that the difficulties modelling continuous
variables are exacerbated when chained.

The misfit for this particular model on total annual income is evident in Figure 4.10 – the distribution has
shifted right and amounts are too high. A similar shift is visible in weekly wages, although interestingly
the two-way relationship between the two remains intact (see Figure 4.11), conditional on the shift.

Figure 4.10 – Frequency polygon and quantiles for total annual income, chained three-year GAN model

-

5%

10%

15%

20%

25%

- 100,000 200,000 300,000

Pr
op

or
tio

n

Gross income

Freq. polygon for total annual income

real synthetic

-
20,000
40,000
60,000
80,000

100,000
120,000
140,000
160,000
180,000
200,000

- 20% 40% 60% 80%

G
ro

ss
 in

co
m

e

Quantiles

Quantiles for total annual income

real synthetic

Yes we GAN 24

Figure 4.11 – Weekly wages and total gross income (including transfers/welfare) from chained three-year
GAN

Single step three-year GAN

We also tested a model using data at time 𝑡 to predict outcomes at time 𝑡 + 3 otherwise keeping the
model setup for training the same. The gains ratio was 0.84, which is materially better than the chained
model but significantly worse than the one-step model. This deterioration we largely attribute to the
vagaries of GAN fitting – see our discussion in Sections 5. Some intermediate-level misfit on gross
annual income is shown in the figure below – while potentially passable in some contexts, combined
with other misfits suggests significant gaps in the generation.

Figure 4.12 – Frequency polygon and quantiles for single-step three-year GAN

4.2.4 VAE results on HILDA – single time step

The gains ratio on the VAE is 0.76, which is in the vicinity (albeit somewhat worse than) the single step
GAN model. Results are similarly encouraging, in that the high-performing GBM model is routinely fooled
by the generations.

-

5%

10%

15%

20%

25%

30%

- 100,000 200,000 300,000

Pr
op

or
tio

n

Gross income

Freq. polygon of total annual income

real synthetic

-
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000

100,000

- 20% 40% 60% 80%

G
ro

ss
 in

co
m

e

Quantiles

Quantiles for Total annual income

real synthetic

Yes we GAN 25

Figure 4.13 – Gains chart on holdout data for selected GAN model. Gains ratio is 0.756 (0=random,
1=perfect discrimination)

Categorical variables fits were generally good. Total variation distance scores were noticeably higher
than the equivalent for GAN. The disability flag in particular is much improved.

Table 4.6 – VAE Total variation distance goodness of fit statistic for categorical variables at time 𝑡 + 1

Categorical variable Total variation distance

Children flag 0.992

FTB flag 0.999

Education level 0.987

Age pension flag 0.997

Carer flag 0.993

DSP flag 0.999

Jobseeker flag 0.994

Multiple job flag 0.996

Employment status 0.986

Labour force status 0.988

Casual work flag 0.990

Change job since flag 0.978

Retired flag 0.996

Marital status 0.992

SEIFA decile 0.996

NDIS flag 0.996

Disability flag 0.997

Health rating 0.959

The VAE achieves a similar fit to the GAN for categorical variables, with the one notable difference being
an improvement in predicting the long-term condition flag. Two examples are shown in Figure 4.14.

Yes we GAN 26

Figure 4.14 – VAE generated distributions for two categorical variables

The KS-scores remain hard to judge due to the mixed-distribution effects affecting the scores. Total
annual income distribution score appears slightly worse than the GAN, and life satisfaction improved.

Table 4.7 – Kolmogorov-Smirnov goodness of fit statistic for continuous variables, VAE model

Categorical variable
Kolmogorov-Smirnov
statistic

Benefits amount(b) 0.274

DSP amount(b) 0.999

Parenting amount(b) 0.019

Total annual income 0.940

Weekly wages(b) 0.982

Life satisfaction 0.897

(a) 1 represents perfectly matching distributions.
(b) KS scores strongly affected by the handling of the mixed/skewed distribution

Figure 4.15 shows the frequency polygon and the quantiles for the total annual income variable. The fit
captures key aspects of the shape – with the main visible defect underpredicting around zero and
overprediction around $20,000. The equivalent plots for Weekly wages (Figure 4.16) shows the
successful capturing of the multimodal pattern of the variable. Figure 4.17 shows underprediction of
high life satisfaction, similar to the GAN.18

18 We do not think this is a universal judgement by AI models on human happiness.

-

10%

20%

30%

40%

50%

60%

70%

employed not in labour
force

unemployed

Pr
op

or
tio

n

Labour force status

Histogram for Labour force status

real synthetic

-
5%

10%
15%
20%
25%
30%
35%
40%

Pr
op

or
tio

n

Self-assessed health

Histogram for Self-assessed health

real synthetic

Yes we GAN 27

Figure 4.15 – Histogram of gross income from VAE (truncated at $300,000)

Figure 4.16 – Histogram of weekly wages from VAE

Figure 4.17 – Distribution of life satisfaction score, VAE model

The VAE does a good job at modelling the relationship between different payment variables, with close
alignment between the real and synthetic heatmaps. Selected heatmaps are provided in the appendix –

-

5%

10%

15%

20%

25%

30%

- 100,000 200,000 300,000

Pr
op

or
tio

n

Gross income

Freq. polygon for total annual income

real synthetic

-

20,000

40,000

60,000

80,000

100,000

- 20% 40% 60% 80%

G
ro

ss
 in

co
m

e

Quantiles

Quantiles for total annual income

real synthetic

-

10%

20%

30%

40%

50%

- 5,000 10,000 15,000 20,000

Pr
op

or
tio

n

Weekly wages

Histogram for Weekly wages

real synthetic

-

5,000

10,000

15,000

20,000

- 20% 40% 60% 80% 100%

W
ee

kl
y

w
ag

es

Quantiles

Quantiles for Weekly wages

real synthetic

-

10%

20%

30%

40%

50%

1 2 3 4 5 6 7 8 9 10

Pr
op

or
tio

n

Life satisfaction

Histogram for Life satisfaction

real synthetic

Yes we GAN 28

the generally appear comparable to those of the GAN, demonstrating that complex interdependencies
between variables are effectively embedded in the model.

4.2.5 VAE results on HILDA – three-year time step

Interestingly (and unlike the GAN), the three-year predictions the VAE appear very promising. The gains
ratio for the chained model (applying the one-year model successively three times) is 0.78, very close to
the one-year performance. The performance of the single step three-year model is also 0.78, suggesting
very little deterioration related to the chaining. Gains charts for these models are included in the
appendix.

Chained VAE model

Figure 4.18 shows the distribution for total annual income for the chained model after three years – while
the underprediction of low incomes is a little more pronounced, the shape for the remaining curve is very
faithful. The weekly wage univariate distribution (Figure 4.19) is very accurate. The complex two-way
relationship remains intact (Figure 4.20).

Figure 4.18 – Frequency polygon and quantiles for total annual income chained three-year VAE model

Figure 4.19 – Histogram of weekly wages for real and simulated data from chained three-year VAE

-

5%

10%

15%

20%

25%

30%

- 100,000 200,000 300,000

Pr
op

or
tio

n

Gross income

Freq. polygon for total annual income

real synthetic

-

20,000

40,000

60,000

80,000

100,000

- 20% 40% 60% 80%

G
ro

ss
 in

co
m

e

Quantiles

Quantiles for total annual income

real synthetic

-
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

- 2,000 4,000 6,000 8,000 10,000

Pr
op

or
tio

n

Weekly wages

Freq. polygon for Weekly wages

real synthetic

-

2,000

4,000

6,000

8,000

10,000

12,000

14,000

- 20% 40% 60% 80% 100%

W
ee

kl
y

w
ag

es

Quantiles

Quantiles for Weekly wages

real synthetic

Yes we GAN 29

Figure 4.20 – Weekly wages and total gross income (including transfers/welfare) from chained three-year
VAE

Stepped three-year VAE

Like the GAN, we also tested a model using data at time 𝑡 to predict outcomes at time 𝑡 + 3. Model
performance looked quite similar to the one-step model across a broad range of variables – some
additional plots are included in the Appendix.

Overall, the chained and stepped three-year VAEs offer far superior performance to the chained and
stepped three-year GANs, suggesting superior model stability. This most likely would extend to longer
time windows too.

4.3 Training time and computational considerations

We have tracked training and generation times across a range of models, using the computational setup
described in Section 3.5. Significant acceleration is undoubtably possible with higher-end setups (more
powerful GPUs or multiple cards).

When training we found:

▪ Both core (one time step) models took about two hours to train about 1000 epochs (although the
models required fewer epochs of training). This scales linearly with the number of epochs, and the
number of rows in the dataset, as might be expected. This may have implications for very large
datasets, although we would expect such datasets would require fewer epochs for convergence.
Example timings are provided in the appendix.

▪ Model fit time was only marginally affected by the number of generator layers for both the GAN and
VAE. This speaks to the relative efficiency of backpropagation, and suggests the core
backpropagation is not the main bottleneck in our fitting. Example timings are provided in the
appendix.

For projection, Table 4.8 show the amount of time taken to score the GAN and VAE on datasets of
differing numbers of rows. The VAE was three times faster to generate – most likely due to fewer layers in
the reconstruction network (compared to the GAN generator network).

Table 4.8 – GAN projection time for differing number of rows

Number of records
generated

GAN scoring
time (seconds)

VAE scoring time
(seconds)

10,000 0.2 0.02

100,000 0.9 0.3

1,000,000 8.6 4.7

10,000,000 135.7 40.9

Yes we GAN 30

While timings for other microsimulations are not public, we regard the speeds above as close to best-in-
class; and this is without distribution across multiple cards and time spent optimising. Much of the
speed comes from how the PyTorch package can effectively leverage the parallelism of GPUs.

Note that 10 million rows in 40 seconds may still mean long simulation times for larger setups. A
simulation across 27 million Australians for 50 time steps, repeated 10 times, would still correspond to
15 hours of projection time. A large GPU network such as 8×Tesla V100 cards (as available in Amazon’s
p3.16xlarge instance) would be about 40 times more powerful than our current setup, reducing this to
about 20 minutes.

4.4 Comparing GAN and VAE training experience

Even beyond distribution mismatches, we found the numerous challenges in training the GAN model,
with many training runs failing to converge to a credible model. Key issues were:

▪ Mode collapse – this occurs when the generator network only produces a few (or only one) type of
output (e.g. not generating over all possible categories of a variable), regardless of the input noise.
The generator can find it hard to break out of these mode collapses, even if it is being exploited by
the discriminator network.

▪ Diminished gradient – this occurs when the discriminator is too good at distinguishing real from
fake data – it learns too quickly relative to the generator evolution. This causes a collapse in the loss
function, limiting the useful signal is passed back to the generator and the generator is not able to
improve. To help mitigate this problem we altered the optimisation algorithm so that the generator
updates twice in each optimisation step (albeit at the lower learning rate), for each single update of
the discriminator.

▪ Sensitivity to initial conditions – In general, the quality of the GAN model seemed highly dependent
on the initial random weights. Running the optimisation algorithm with small random changes in
initial weights seemed to lead to very different quality fitted models. Using the ‘Normal Xavier’
weight initialisation algorithm in PyTorch helped a great deal with this.

In contrast, the VAE proved much more consistent in training – mode collapses were infrequent and
finding sensible parameter choices (such as the 𝛽 to balance reconstruction error and KL-difference,
and 𝛾 to balance continuous and categorical loss functions) were not too onerous.

As a bonus, VAE training time was lower (fewer epochs required) and generation was faster (simpler
generator network), although these are obviously sensitive to the design.

5 Discussion

Overall feasibility of using AI models for microsimulation

We regard our results in this paper as a qualified success:

▪ At a basic level, the GAN and VAE models were successfully able to generate high-quality synthetic
records on both the simulated dataset and the larger, more complex real-life dataset. The most
common challenges of these tabular data applications are:

– Different types of variables on different scales, including some quite complex distributions

– Interdependencies between variables

– Chaining together multiple predictions (for the VAE model).

These have been successfully handled – the approach is well past the proof-of-concept stage.

▪ Overall, the GBM discrimination was still relatively good at distinguishing between the generated and
actual projected values on our real-life dataset. Some of this performance is not fully understood –
one- and two-way plots are generally good, so the effects being exploited (whether artefacts from

Yes we GAN 31

the network models or uncaptured structures in the real data) may be quite complex. Further worth
using SHAP plots or similar would provide some insight into this. Conversely, we deliberately chose
a challenging set of variables with many interdependencies, increasing the likelihood of such as
result.

Ultimately, we have no like-for-like comparison of discrimination performance with existing
microsimulation models, so cannot judge whether the overall performance achieved in this paper is
sufficiently good.

▪ The power of GPU-based computing for AI models is also evident, with good model fitting and
generation speeds without significant time optimising.

Comparison between the GAN and VAE

While the intuition behind the GAN is appealing, the VAE proved to be a far better model structure;
convergence was more consistent (and significantly fewer collapsed models) and models were stable
enough to perform multiple time steps. Given the long-term nature of some microsimulation work, such
stability is at a premium.

While capturing the full richness of continuous variables were a challenge for the VAE (as it was for the
GAN), the superior performance on chained results suggests that, in our example at least), the VAE has
better captured some of the deeper structure for evolution over time.

Broader learnings

Some of our observations are applicable to microsimulation models more broadly:

▪ Improved diagnostics – From our experience, much of the validation of microsimulation models
relies on one-way and two-way summaries. This de-emphasises the relationships between
variables. The idea of a discriminator model is therefore a useful addition to current practice,
regardless of whether or not the underlying model is an AI model. Variable importance and tools
such as SHAP values and partial dependence charts can then point to areas of model weakness
efficiently. Similarly, the KS scores appear useful one-number diagnostics to track distributions
across models.

▪ Care in variable selection – Continuous variables (and mixed distribution variables) proved to be
the more challenging variables in our real-life dataset modelling. This is consistent with our
experience more broadly – categorical and transition models tend to be easier to build and chain,
and are pervasive in existing approaches. This means basic model design remains important – which
variables to include to avoid unnecessary complexity. This includes considering the best way to
handle mixed distribution variables.

Relatedly, care is needed when choosing a larger number of highly correlated or interdependent
variables. In some cases there may be parameterisations that are easier for models to handle; for
example, modelling income components separately (rather than also modelling total income)
reduces interdependence.

▪ Multistep modelling – Understanding the relative performance of a chained prediction versus a
single leap (in our case over three years) is a natural way to understand the effectiveness of the
chaining and identifying deterioration.

Areas for further research

There are numerous areas for potential extension and development.

▪ Generalisability to other datasets – Our approach has significant generalisability (for example, in
the way we can handle both categorical, continuous and mixed distribution variables), but we have
not applied the approach to other human services datasets. It would be interesting to see whether
similar model structures (e.g. number of layers and nodes) remained suitable, or if these need to be
highly tailored to the data context.

Yes we GAN 32

▪ Scaling training and generation – We do not explore more powerful hardware setups, which may be
warranted for larger datasets. Scaling generation is straightforward, but finding the most efficient
ways to scale learning in distributed environments may require experimentation.

▪ Improving handling of continuous variables – The different distributions of continuous variables
present challenges. It may be that standardised transformations (e.g. converting to standard normal
via CDF-based transformations) is an effective way to sidestep these issues.

▪ Alternative AI model structures – We selected GANs and VAEs as common models that could be
readily tailored to our specific use case. The world of potential model structures is large. As
examples of other untested alternatives:

– Wasserstein GAN – Instead of a generator attempting to “fool” a discriminator, we replace the
discriminator with a critic model. This critic model scores the quality of real vs. fake samples by
measuring the Wasserstein distance. The critic thus aims to maximise the difference between
the scores of the real and fake samples. The Wasserstein GAN tends to be less prone to mode
collapse and vanishing gradients. This allows for improved stability and ease of training.

– Hierarchical VAE – while a regular VAE has one layer of latent variables, a hierarchical VAE adds
a hierarchical, multi-layered structure to the latent variables. The encoder model breaks input
data down into these layers, while the decoder reconstructs the input by sampling from each
layer from top to bottom. In principle this allows the model to prioritise core effects, with
secondary variation then applied sequentially.

▪ Developing tools for finer-grained control of the model – Our model effectively takes the data at
face value and attempts to reproduce it. In practice, projects may need to be slightly different to the
recent history. For instance, time trends can be recognised, or patterns due to recent policy changes
may need to be adjusted for, or macroeconomic forecasts allowed for. This can be easier in
traditional microsimulation setups where specific models can be tweaked to reflect these factors.
Doing this for AI models is less direct, but there are options:

– Including time factors or macroeconomic variables in the model – including these factors
allow the model to recognise some of the time trends. Judicious setting of these variables at the
generation stage will then provide some control,

– Reweighting the training data – If certain outcomes need to be modified by a known amount,
the data can be weighted to adjust the average outcome rate by the necessary amount (e.g.
skewing the modelling data towards higher employment to reflect expected improvements). This
would become more complex if multiple outcomes needed to be adjusted simultaneously.

References

▪ Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk, M., & Kasneci, G. (2022). Deep neural
networks and tabular data: A survey. IEEE transactions on neural networks and learning systems.

▪ Chang, S. L., Harding, N., Zachreson, C., Cliff, O. M., & Prokopenko, M. (2020). Modelling
transmission and control of the COVID-19 pandemic in Australia. Nature communications, 11(1),
5710.

▪ Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2020).
Generative adversarial networks. Communications of the ACM, 63(11), 139-144.

▪ Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning: data mining,
inference, and prediction (Vol. 2, pp. 1-758). New York: springer.

▪ Jang, E., Gu, S., & Poole, B. (2016). Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144.

▪ Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders. Foundations and
Trends in Machine Learning, 12(4), 307-392.

▪ Kingma, D. P., & Welling, M. (2013, December). Auto-encoding variational bayes.

Yes we GAN 33

▪ Maddison, C. J., Mnih, A., & Teh, Y. W. (2016). The concrete distribution: A continuous relaxation of
discrete random variables. arXiv preprint arXiv:1611.00712.

▪ Moyaux, T., Liu, Y., Bouleux, G., & Cheutet, V. (2023). An agent-based architecture of the digital twin
for an emergency department. Sustainability, 15(4), 3412

▪ Nazabal, A., Olmos, P. M., Ghahramani, Z., & Valera, I. (2020). Handling incomplete heterogeneous
data using vaes. Pattern Recognition, 107, 107501.

▪ Rasheed, A., San, O., & Kvamsdal, T. (2020). Digital twin: Values, challenges and enablers from a
modeling perspective. IEEE access, 8, 21980-22012.

▪ Sun, Y., Li, J., Xu, Y., Zhang, T., & Wang, X. (2023). Deep learning versus conventional methods for
missing data imputation: A review and comparative study. Expert Systems with Applications, 227,
120201.

▪ Telyatnikov, L., & Scardapane, S. (2023, April). Egg-gae: scalable graph neural networks for tabular
data imputation. In International conference on artificial intelligence and statistics (pp. 2661-2676).
PMLR.

▪ Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017).
Attention is all you need. Advances in neural information processing systems, 30.

▪ Yoon, J., Jordon, J., & Schaar, M. (2018, July). Gain: Missing data imputation using generative
adversarial nets. In International conference on machine learning (pp. 5689-5698). PMLR.

▪ Yoon, J., Zhang, Y., Jordon, J., & Van der Schaar, M. (2020). Vime: Extending the success of self-and
semi-supervised learning to tabular domain. Advances in neural information processing systems,
33, 11033-11043.

Yes we GAN 34

Appendix A Additional results

A.1 Additional result plots – simulated example

The plots below are real and synthetic data arising from the VAE, equivalent to the plots presented for
the GAN in Figure 4.1.

Figure A.1 – Scatter plots: original data / generated data from VAE

Yes we GAN 35

A.2 Additional result plots – HILDA VAE fit (single time step)

Figure A.2 – Receipt of age pension by age

Like the GAN, the VAE is able to capture the usage of the age pension from the (60, 70] age bracket
upwards.

Yes we GAN 36

Figure A.3 – Wages by labour force status

Figure A.4 – Weekly wages and total gross income (including transfers/welfare)

Figure A.5 – Weekly wages and transfers (excluding family tax benefit)

Yes we GAN 37

Figure A.6 – Gains chart for the chained three-year VAE model (gains ratio 0.782)

Figure A.7 – Gains chart for single step three-year VAE model. Gains ratio is 0.778

Figure A.8 – Frequency polygon and quantiles for total annual income, single-step three-year VAE model

-

5%

10%

15%

20%

25%

30%

- 100,000 200,000 300,000

Pr
op

or
tio

n

Gross income

Freq. polygon for total annual income

real synthetic

-

20,000

40,000

60,000

80,000

100,000

- 20% 40% 60% 80%

G
ro

ss
 in

co
m

e

Quantiles

Quantiles for total annual income

real synthetic

Yes we GAN 38

Figure A.9 – Frequency polygon and quantiles for weekly wages, single-step three-year VAE model

A.3 Additional timings

Training time by number of Epochs

Table A.1 –Model training time for different numbers of epochs

Number of training
epochs

GAN training time
(minutes)

VAE training
time (minutes)

200 28.3 22.9

500 71.7 69.1

1000 143.7 138.5

Both the GAN and VAE take a substantial amount of time to train, despite the relatively small size of the
dataset used. However, this may be sped up using improved hardware.

Training time by number of layers

We measured the time taken to train models with differing numbers of layers (in the GAN generator and
in the VAE encoder networks respectively). This is shown in Error! Reference source not found. and
 REF _Ref196142893 \h Error! Reference source not found.. In general, we find there are small
increases in training time when the number of layers is increased.

Table A.2 – GAN training time for differing numbers of generator layers

Number of generator layers
Training time
(minutes)

3 (linear, ReLU, linear) 56.4

5 (linear, ReLU, linear, ReLU, linear) 57.2

7 (linear, ReLU, linear, ReLU, linear, ReLU, linear) 57.5

-

10%

20%

30%

40%

50%

- 2,000 4,000 6,000 8,000 10,000

Pr
op

or
tio

n

Weekly wages

Freq. polygon for weekly wages

real synthetic

-
2,000
4,000
6,000
8,000

10,000
12,000
14,000

- 20% 40% 60% 80% 100%

W
ee

kl
y

w
ag

es

Quantiles

Quantiles for weekly wages

real synthetic

Yes we GAN 39

Table A.3 – VAE training time for differing numbers of encoder layers

Number of generator layers
Training time
(minutes)

6 (linear, BatchNorm1d, ReLU, linear,
BatchNorm1d, Tanh)

16.4

9 (linear, BatchNorm1d, ReLU, linear,
BatchNorm1d, ReLU, linear, BatchNorm1d, Tanh)

16.6

12 (linear, BatchNorm1d, ReLU, linear,
BatchNorm1d, ReLU, linear, BatchNorm1d,
ReLU, linear, BatchNorm1d, Tanh)

17.1

