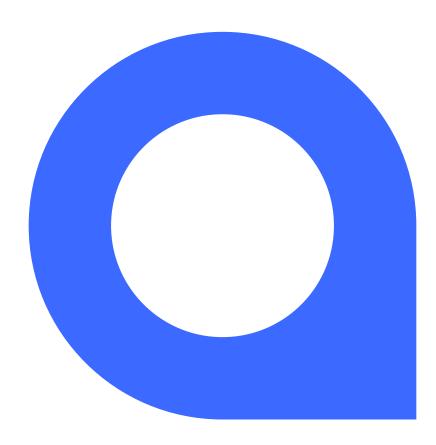
Actuaries Institute.

LASSO Regularised GLMs: Enhancements for Life Insurance Experience Analysis

Timothy Lam Segment Research and Analytics Actuary – Gen Re July 2025



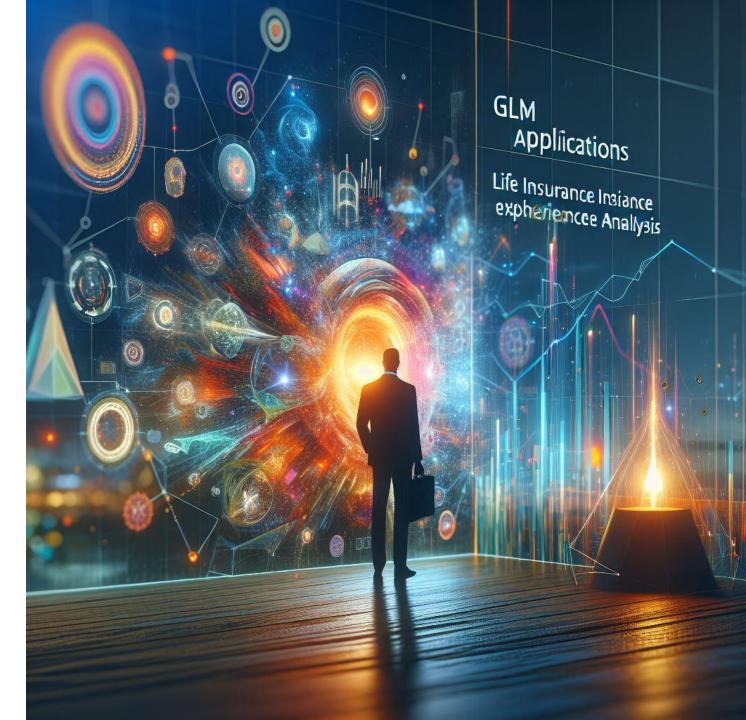
Contents

01
03
10
12

Motivation

Motivation

- Updated Education System
- Impact of Generative AI
- GLM Applications in Life Insurance
 Experience Analysis Increasingly
 Common
- Extension to More Modern GLM
 Approaches

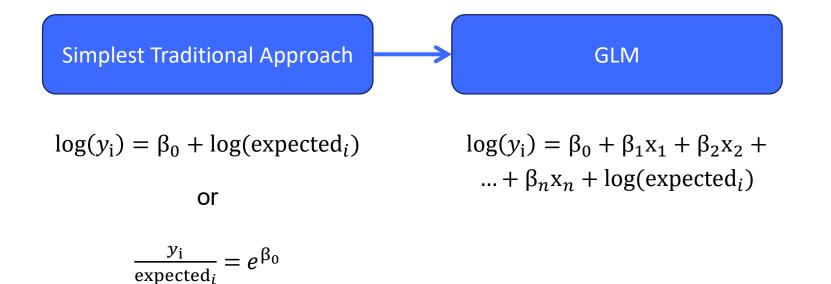


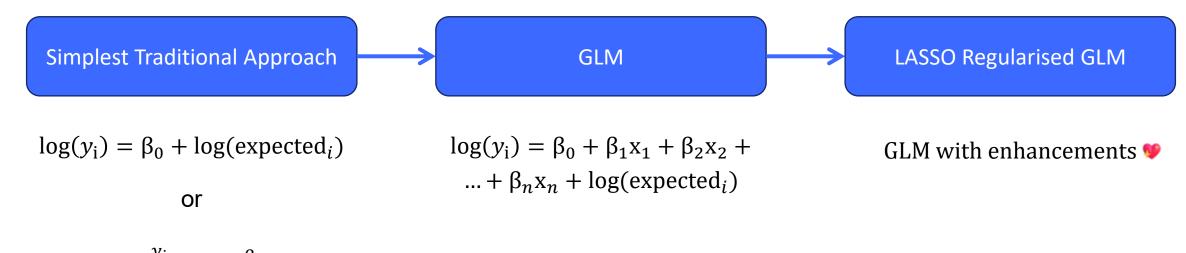
Simplest Traditional Approach

 $\log(y_i) = \beta_0 + \log(\text{expected}_i)$

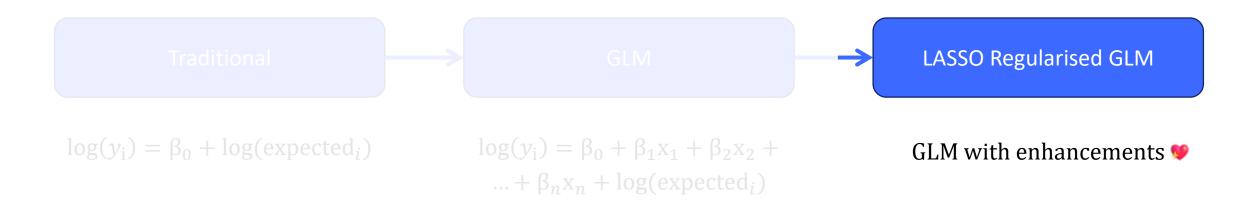
or

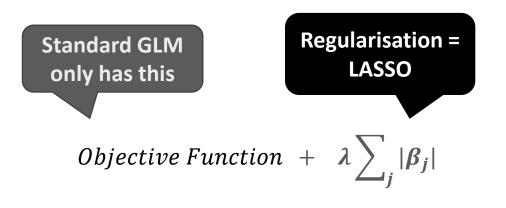
$$\frac{y_i}{\text{expected}_i} = e^{\beta_0}$$





$$\frac{y_i}{\text{expected}_i} = e^{\beta_0}$$





Benefits of LASSO Regularised GLMs

Interpretability

variable	relativity
(Intercept)	103%
genderM	80%
genderF	140%
occupation_White Collar	123%
occupation_Blue Collar	75%
genderM:occupation_Blue_Collar	130%

Modelling Relative to a Target Table/ Assumptions

Modelling AvE Ratios

$$\log(\theta_x) = \beta_0 + \beta_{male} x_{male} + \beta_{smoker} x_{smoker} + \log(m_x^{Table} E_x)$$

$$\frac{\mu_x}{\mu_x^{Table}} = e^{\beta_0 + \beta_{male} x_{male} + \beta_{smoker} x_{smoker}} = e^{\beta_0} \cdot e^{\beta_{male} x_{male}} \cdot e^{\beta_{smoker} x_{smoker}}$$

$$\mu_{x} = \mu_{x}^{Table} \cdot e^{\beta_{0}} \cdot e^{\beta_{male} x_{male}} \cdot e^{\beta_{smoker} x_{smoker}}$$

Good Results Comparable to Machine Learning Techniques

Using machine learning to model claims experience and reporting delays for pricing and reserving

By L Rossouw and R Richman

Presented at the Actuarial Society of South Africa's 2019 Convention 22–23 October 2019, Sandton Convention Centre

ABSTRACT

In this paper we review existing modelling approaches for analysing claims experience in the presence of reporting delays, reviewing the formulation of mortality incidence models such as GLMs. We then show how these approaches have traditionally been adjusted for late reporting of claims using either the IBNR approach or the more recent EBNER approach. We then go on to introduce a new model formulation that combines a model for late reported claims with a model for mortality incidence into a single model formulation. We then illustrate the use and performance of the traditional and the combined model formulations on data from a multinational reinsurer. We show how GLMs, lasso regression, gradient boosted trees and deep learning can be applied to the new formulation to produce results of superior accuracy compared to the traditional approaches.

KEYWORDS

Machine learning; IBNR; incurred but not reported; experience analysis; reinsurers; EBNER; analytics; gradient boosted trees; deep learning; mortality models; pricing and reserving

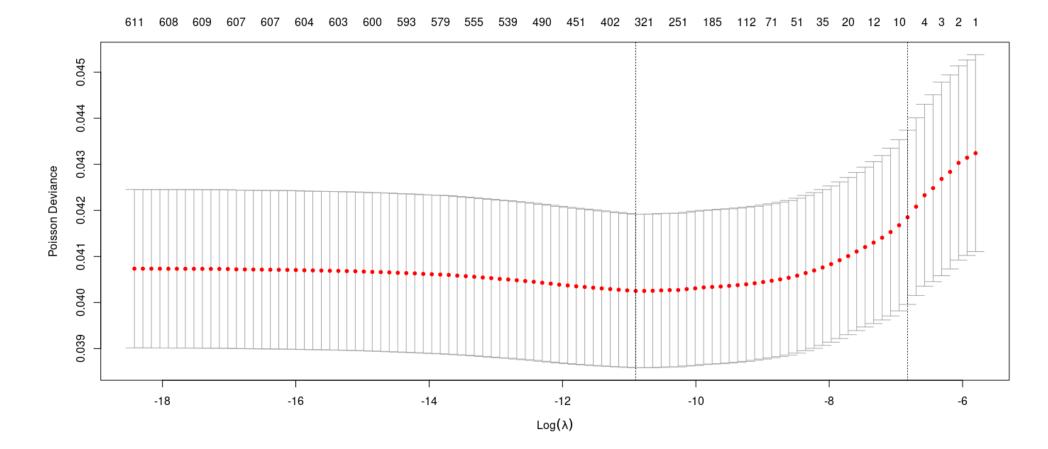
CONTACT DETAILS

Mr Louis Rossouw, Gen Re, Cape Town; Email: LRossouw@genre.com Mr Ronald Richman, QED, Johannesburg; Email: ronald.richman@qedact.com

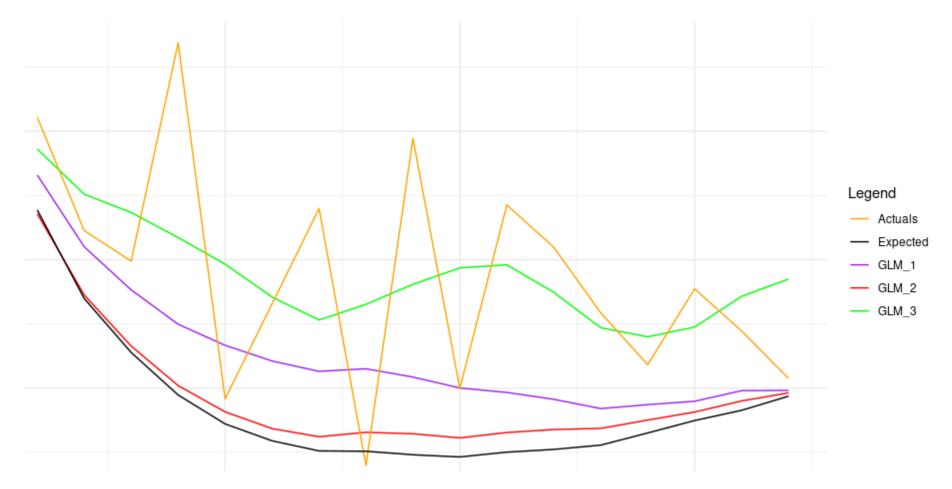


ACTUARIAL SOCIETY 2019 CONVENTION, SANDTON, 22-23 OCTOBER 2019 |1

Variable Selection



Similarity to Credibility Weighting



Case Study

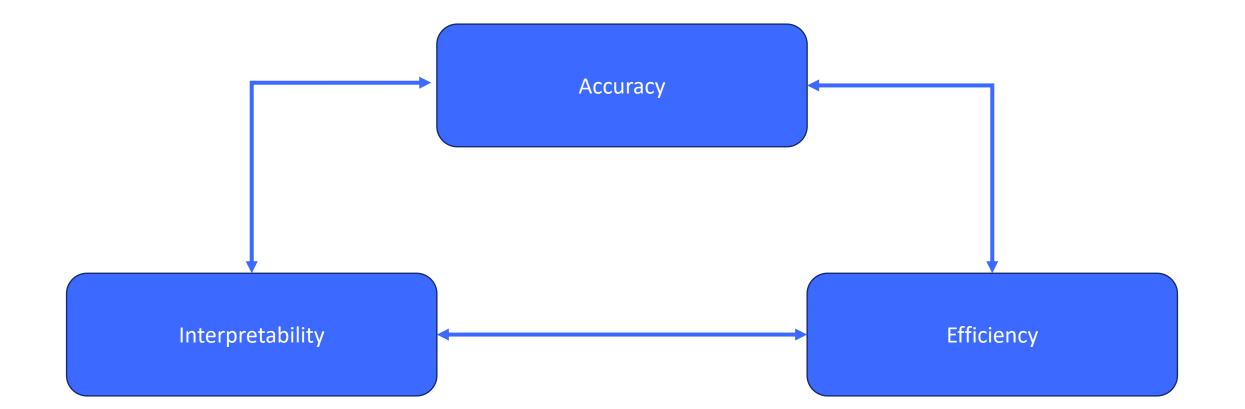
Context and Data

• New Zealand Disability Income Accident Incidence Data

Fit					Validate	
2013	2014	2015	2016	2017	2018	2019

• Weight = Industry Table

Considerations



Accuracy – Poisson Deviance

Poisson Deviance by Model

Traditional/GLM/GBM Poisson Deviance Train Poisson Deviance Validate

Traditional	0.0436657	0.0448884
LASSO Regularised GLM	0.0391431	0.0406055
GBM	0.0354692	0.0420414

Accuracy – Pseudo R-Squared

$R^2 = 1 - \frac{Sum \ of \ Squared \ of \ Residuals \ from \ Fitted \ Model}{Total \ Sum \ of \ Squares}$

$$Pseudo R^{2} = 1 - \frac{Poisson \, Deviance \, of \, Fitted \, Model}{Poisson \, Deviance \, of \, Null \, Model}$$

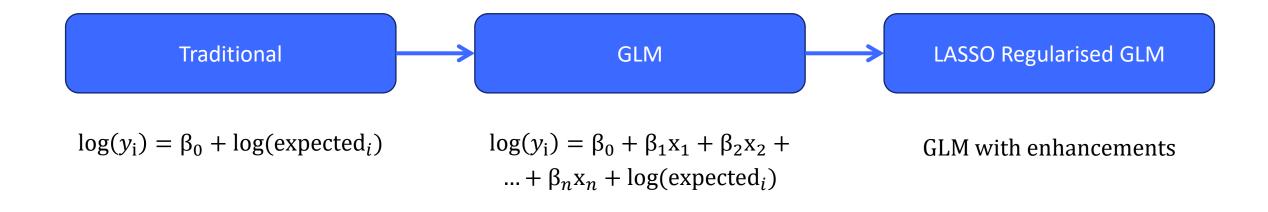
Accuracy – Pseudo R-Squared

Pseudo R Squared by Model

Traditional/GLM/GBM Pseudo R-Squared Train Pseudo R-Squared Validate

Traditional	0.0%	0.0%
LASSO Regularised GLM	10.4%	9.5%
GBM	18.8%	6.3%

Interpretability



Efficiency

Model	Model Run/Train Time	Explanation Time	Upstream Efficiency	Downstream Efficiency
Traditional Analysis	1 min	Less	Cimilar	 Assumption Structure for Projection Software Business
LASSO RegularisedGLM	20 min	More	Similar	 Business Understanding Smoothness

- The Actuaries Institute acknowledges the traditional custodians of the lands and waters where we live and work, travel, and trade.
- We pay our respect to the members of those communities, Elders past and present, and recognise and celebrate their continuing custodianship and culture.

About the Actuaries Institute

The Actuaries Institute is the peak professional body for Actuaries in Australia. The Institute provides expert comment on public policy issues where there is uncertainty of future financial outcomes.

Actuaries have a reputation for a high level of technical financial expertise and integrity. They apply their analytical and risk management expertise to allocate resources efficiently, identify and mitigate emerging risks and to help maintain system integrity across multiple segments of the financial and other sectors. This unrivalled expertise enables the profession to comment on a wide range of issues including life, general and health insurance, climate change, superannuation and retirement income policy, enterprise risk management and prudential regulation, the digital economy, finance and investment and wider health issues.

© Institute of Actuaries of Australia 2023. All rights reserved.

Thank you

Actuaries Institute actuaries.asn.au