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Abstract 
 

Retail insurance pricing can be a lengthy and complex process involving many 

technical and practical considerations. To respond to rapid market changes, insurers 

require not only an established framework to conduct pricing reviews, but also the 

capabilities to translate data into pricing responses in an accurate and efficient 

manner. One challenge faced by insurers is that output from tree-like models may not 

be directly implementable, either due to governance concerns or the inability of 

rating engines to accommodate machine learning models. Another challenge is how 

to make use of recent data, which may provide valuable insights into emerging trends, 

yet is underdeveloped.  

 

 

In this paper, we propose approaches to better utilising machine learning models to 

improve insurers’ pricing capabilities, which could be well integrated into insurers’ 

existing pricing algorithms. The approaches aim to overcome the previously 

highlighted two challenges and to enable an efficient risk modelling and pricing 

delivery process, by directly leveraging the machine learning results. A case study is 

presented to demonstrate the viability and to highlight the advantages of the 

approaches using actual insurance claim data. The pricing solutions are expected to 

significantly boost insurers’ pricing capabilities under market conditions that change 

rapidly. 

 

 

1 Introduction 
 

Retail insurance pricing can be a lengthy and complex process involving many 

technical and practical considerations. A pricing review may be considered a 

strategic pricing initiative or a tactical pricing review. A strategic pricing initiative 

covers all aspects of an end-to-end pricing process (as described in [1]), and is usually 

carried out when an insurer wants to develop and launch a new product or revamp 

an existing product to meet observed or perceived market demands. A tactical 

pricing review addresses divergence between technical premiums (the insurer’s 

expected cost to supply insurance plus a margin) and market prices, or adjusts the 

insurer’s desired exposures to a particular segment. Due to the broader impact of 

pricing, insurers generally would establish a governance framework for pricing reviews. 

With increased market competition, regulatory requirements, and more sophisticated 

customers, it is essential that insurers not only establish an effective governance 
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framework, but also improve the pricing capabilities to translate data into pricing 

responses in an efficient manner. 

 

 

The insurance industry has widely adopted general linear models (GLMs) for risk 

modelling and pricing [2]). The interpretability of GLM and its easy implementation 

have made it an acceptable framework to build insurance pricing models to ensure 

compliance in a heavily regulated environment [3, 4]. However, machine learning 

methods have gained growing attention and become increasingly popular in recent 

years. Research has demonstrated their capabilities and advantages in reserving [5, 

6], fraud detection [7], risk modelling [3, 5, 8-9], pricing optimisation [10], and marketing 

[11]. Despite the popularity, there have been a few challenges highlighted in the risk 

modelling and pricing delivery processes when applying machine learning methods.  

 

 

One challenge faced by the insurers is that results from the tree-like models may not 

be directly implementable, due to either governance concerns (e.g., transparency 

and explainability of the resulting insurance premium) or the incapacity of rating 

engines to accommodate machine learning models. In practice, insurers use different 

approaches to address this problem, for example, by building GLMs on top of the 

machine learning model, or manually adjusting existing rating tables along several 

most significant rating factors. Another challenge is how to make use of recent data, 

which may provide valuable insights into emerging trends yet is underdeveloped. In 

short-tail retail insurance pricing, insurers generally avoid the most recent 6 months 

data when building the models. Although the data might be subsequently used for 

validation, the exclusion from modelling stage means the latest experience is not 

reflected in the obtained risk relativities.  

 

 

In this paper, we propose approaches to overcome the risk modelling and pricing 

delivery challenges highlighted above. The solutions aim to better utilise machine 

learning models and have the flexibility to be easily integrated into insurers’ existing 

pricing algorithms without undesired modifications. For the implementation challenge 

arising with machine learning models, the proposed approach leverages the partial 

dependence plot to extract risk relativities as substitutes of GLM coefficients. For the 

underdeveloped data challenge, the proposed approach suggests modelling each 

risk component using different data periods. The viability and advantages of the 

proposed approaches are discussed in detail with a case study using actual insurance 

claim data. The solutions are expected to significantly boost insurers’ pricing 

capabilities and therefore offers a competitive advantage under market conditions 

which are changing rapidly. 

 

 

2 Data and Models 
 

2.1 Data 
 

The case study was based on a dataset of approx. 678,000 French motor third-party 

liability policies observed mostly over one year [12]. For demonstration purposes, we 

only built a claim frequency model, and ignored claim size, although claim amount 
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was available in the data. The data contains 12 columns with 10 risk features collected 

on the policies, as shown in Table 1. Three models were built to predict claim frequency. 

 
Table 1. Risk features of the dataset [12] 

Column Description 

IDpol The policy ID 

ClaimNb Number of claims during the exposure period 

Exposure The period of exposure for a policy, in years 

VehPower The power of the car (ordered values) 

VehAge The vehicle age, in years 

DrivAge The driver age (≥ 18), in years 

BonusMalus Bonus/malus, between 50 and 350: <100 means bonus, >100 means 

malus 

VehBrand The car brand (unknown categories) 

VehGas The car fuel, diesel or regular 

Area The density value of the city community where the car driver lives in: from 

“A” for rural area to “F” for urban centre 

Density The density of inhabitants (number of inhabitants per square-kilometre) of 

the city where the car driver lives in 

Region The policy region in France (based on the 1970-2015 classification) 

 

 

2.2 Machine Learning Models 
 

For machine learning methods, we built a regression model using gradient boosting 

machines (GBMs) [13, 14]. GBMs develop an ensemble of weak-performing decision 

trees, by training each of the trees on different labels, that collectively formulates 

strong predictions. They can be used in regression and classification tasks. In this paper, 

we used an open-source package Catboost [15], given its capability of handling 

categorical features without one-hot encoding pre-processing. Furthermore, it allows 

monotonic constraints to be applied to certain features in the model specification. 

This is of particular importance in pricing practice, which will be discussed in the 

following section.  Figure 1 gives an excerpt of one of the decision trees in the trained 

GBM and illustrates how the decision tree works. At each node of the decision-making 

process, the model determines which branch to follow by answering a “yes-no” 

question using the criteria in the node, and a prediction value will be arrived at the 

leaf nodes of the tree. The final prediction value is calculated by summing up all 

prediction values from each of the trees in the ensemble. 

 

 
Figure 1. Decision process  
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2.3 Generalized Additive Models 
 

For GLMs, two models were built using generalized additive models (GAMs) [16]. A 

GAM is a special type of GLM in which the linear response variable depends on smooth 

functions of the predictor variables:  𝑔(𝐸(𝑌)) = 𝛼 + ∑ 𝑓𝑖( 𝑥𝑖)𝑘
𝑖=1 + 𝜀, where the error term 

𝜀  is independent of the 𝑥𝑖 ’s and 𝑓𝑖( 𝑥𝑖)  is a smooth function of 𝑥𝑖 . The primary 

advantage of GAMs, compare to GLMs, is that they allow the relationship between 

the response variable and the predictor variables to be additive, but not necessarily 

in a monomial form. In the context of insurance pricing, this means the rate of risk 

change can be different along the range of a predictor variable, which is particularly 

useful. For example, for motor insurance, the change of risk when the vehicle age turns 

from 0 (brand new) to 1 year, compare to from 15 to 16 years, could be significantly 

different. In this paper, a GAM was developed by directly fitting to the raw claim data. 

Furthermore, a second GAM was built by fitting to the predicted values of the GBM, to 

acknowledge that insurers often develop an unconstrained machine learning model 

and refer to as the source of truth regarding the technical premiums.  

 

 

3 Results 
 

3.1 Model Performance 
 

A GBM and a GAM (“GAM-Raw”) were first trained on the raw dataset and a second 

GAM (“GAM-GBM”) was then trained using the predicted values of the GBM. As in 

Figure 2a, the top four features that explain the highest variations of the risk in the data 

are: exposure, bonus malus, vehicle age, and driver age, while area only contributes 

marginally to predicting the risk. To compare the goodness of fit, the log-likelihood 

values of the three models were calculated. Of the three models, the GBM was found 

to outperform both the GAMs, and the two GAMs didn’t differ significantly from each 

other. Figure 2b compares the discrimination power of the GBM and GAM-GBM. 

Compared to the GAM-GBM, the GBM has a higher Gini gain, indicating an overall 

better fitting, which is consistent with results from log-likelihood values. On individual 

policy basis, the log-likelihood values suggest the GBM has a better performance for 

approximately 60% of the 223,500 out-of-sample test samples. 

 

 
Figure 2. (a) Feature importance from GBM; (b) discrimination power of GBM vs GAM-GBM. 
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Figure 3 compares the observed and predicted claim frequency of the three models 

along the top four features. As in the chart, the three predicted curves are generally 

close to each other, however the GBM does adapt better to the observations by 

allowing for higher risk variabilities. A particular example is the claim risk by vehicle age. 

The data indicates a brand-new vehicle (VehAge = 0) incurs a much higher claim risk 

compared to a vehicle of 1 year old. This feature was highlighted in the GBM by 

acknowledging that the claim risk would drop significantly when VehAge changes 

from 0 to 1. However, the risk variation was smoothed out in the GAMs since GAM 

could only produce a smoothed curve for a numerical predictor variable. 

 

 
 

 
Figure 3. Observed (target) and predicted (GBM; GAM-Raw; GAM-GBM) claim frequency 

 

 

3.2 Feature Relativity and Market Prices 
 

One of the reasons that GLMs are widely adopted in the insurance industry is their 

interpretability and ease of implementation. However, the results of machine learning 

models can also be easily interpreted using Shapley values [17, 18]. We will 

demonstrate that the partial dependence plot has provided a solution to the direct 

implementation of machine learning results. 

 

 

Looking at GLMs, the relationship between the response variable and the predictor 

variables is given by: 𝑌~𝑔−1(𝛼 + ∑ 𝛽𝑖𝑥𝑖𝑖 ). In insurance pricing, a log link function is the 

most popular choice. In this case, 𝑌~ exp(𝛼 + ∑ 𝛽𝑖𝑥𝑖𝑖 ) = 𝛼′ × (𝛽1
′)𝑥1 × (𝛽2

′ )𝑥2 × ⋯ × (𝛽𝑛
′ )𝑥𝑛, 

where 𝛼′ = 𝑒𝛼 and 𝛽𝑖
′ = 𝑒𝛽𝑖. This means essentially, that each predictor variable 𝑥𝑖 will 

contribute to a multiplicative factor 𝑟𝑖 = (𝛽𝑖
′)𝑥𝑖 in the final pricing. In a score card rating 

engine, variable 𝑥𝑖 may only take the value of either 0 (if not belong to a group) or 1 

(if belonging to a group). This implies 𝑥𝑖 will simply contribute a factor of 𝑟𝑖 = 𝛽𝑖
′ in the 

final pricing. In this case, 𝛽𝑖
′ can be interpreted as the risk relativity of variable 𝑥𝑖, and 

𝛼′  can be interpreted as the baseline premium. In Shapley values, the partial 
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dependence plot can be interpreted in a similar way. This implies insurers could use 

the partial dependence function to derive the market prices to be implemented into 

the rating engine. 

 

 

Figure 4 gives the risk relativities of the top four features in the three models. Despite 

the difference, in general, the risk relativities of the three models follow the same 

pattern, except that the GBM allows for non-smooth risk variations along the predictor 

variables. In contrast, GAMs can only produce smoothed risk relativity curves for 

numerical predictor variables. The results imply risk relativities from GBMs can be 

directly implemented into rating engines for pricing purposes. 

 

 
Figure 4. Risk relativity of top four features: exposure, bonus malus, vehicle age and driver age. 

 

 

The difference in the market prices of the GBM and GAM-GBM was investigated to 

assess the impact of large premium movements. As in Figure 5a, for 53% of the policies, 

the difference in the market prices of the two models is less than 10%; and for 94% of 

the policies, the difference is less than 30%. This indicates that the suggested modelling 

approach, while more accurately aligning to expected outcomes, is not too radical 

to be implemented. Figure 5b compares the performance of the derived GBM rating 

and the GAM rating. It indicates the proposed approach still outperforms the GAM 

approach despite some loss of the discrimination power during the implementation 

process.   
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Figure 5. (a) Distribution of difference in the pricing between GAM and GAM-GBM; (b) 

discrimination power of GBM vs GAM-GBM rating. 

 

 

3.3 Drifted Experience and Implications 
 

One challenge in insurance pricing is determining how to leverage the most recent 

experience. In short-tail retail pricing, one common practice is to exclude the most 

recent 6 months’ data when building a model, because it is underdeveloped due to 

lags in reporting. Although the data might be used to adjust the model outputs in a 

later validation stage, this is not ideal as the obtained risk relativities may not reflect 

latest experience. 

 

 

One observation is that claim frequency and claim severity typically have different 

development patterns. In practice, for short-tail business, claim frequency tends to be 

fully developed or close to fully developed much faster than claim severity. 

Furthermore, the unexpected emerging trends are often characterised by changes in 

claim frequency. As to the claim severity, the trend is often driven by changes in the 

inflation and supply chains, which can be anticipated to some extent. In this case, we 

propose to build two separate models (i.e., claim frequency and claim severity models) 

to account for the different components of the technical premiums, using different 

periods of claim data. For example, for short-tail retail pricing, insurers could use one 

year’s claim experience up to one month ago to build a claim frequency model. 

Insurers could then use one to two years’ claim experience, adjusted for anticipated 

changes in the inflation and supply chains, to build a claim severity model. The longer 

period of the data used is to account for the higher volatility embedded in claim 

severity experience. The claim frequency and claim severity model together 

determine the technical premium for a particular policy. 

 

 

To demonstrate how the proposed approach could address the emerging trends in 

claim frequency, we randomly selected 25% policies from the raw data to proximate 

the latest three months’ experience. A claim risk drift was applied to the selected 

policies, by assuming that claim frequency increased by 2.0%, 4.0% and 6.0% in a 

particular area (Area = B) during the three months. The same drift assumption was also 

applied to one of the vehicle brands (VehBrand = B5) to account for potential impact 

of feature interactions. Two GBMs were then trained separately on the raw data and 

the drifted data, and a comparative analysis was done based on the two models. 
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Figure 6a and b compare the risk relativities for area and vehicle brand using the raw 

data and the drifted data. The GBM trained on the drifted data clearly identified the 

changes in the claim risk in area “B” and for vehicle brand “B5”. More importantly, 

Figure 6c indicates that due to the drifted claim risk, the explanatory power of the 

predicator variable area has increased compared to the original model (as in Figure 

2a).  

 

 

 
 

 
Figure 6. (a)(b) Risk relativity of GBMs based on the raw data and the drifted data; (c) feature 

importance based on the drifted data. 

 

 

4 Discussion 
 

In this paper, we propose approaches to overcome two particular challenges faced 

by the insurers in the risk modelling and pricing delivery processes, i.e., how to 

implement machine learning results, and how to better utilise more recent data in risk 

modelling. A case study was performed based on a motor third-party liabilities dataset 

to demonstrate the approaches in detail.  

 

 

In section 3.1, the comparison between model performance indicated GBMs can offer 

a better risk differentiation compared to GAMs. This suggests potential commercial 

advantages by shifting towards machine learning models in the pricing process. Due 

to inherent restrictions, for numerical feature, GAMs can only produce a smoothed 

curve based on a smooth function of the underlying predictor, as shown in the risk 

relativity curve. One possible solution to allow for higher variations in risk relativities of 

numerical features in GAMs is to treat them as categorical features. However, 



Approaches to Better Utilising Machine Learning Models for Efficient Modelling and Pricing 

Delivery 

10 

 

additional data pre-processing steps are generally required to group the numerical 

values into a limited number of groups, which could be a subjective and onerous 

process.  

 

 

Section 3.2 further highlighted a solution based on risk relativities from GBMs is 

practically equivalent to using GLM coefficients. The risk relativities can be easily 

obtained with the partial dependence plot and implemented into rating engines. This 

saves the time needed to build a GLM on top of the GBM. Since GBMs offer a better 

risk differentiation, the approach will help target more accurately on the profitable 

segments and support sustainable growth for the insurers. An important point needs to 

be made is that this solution doesn’t require a change to the structure of insurers’ 

existing pricing algorithms. A change to the structure of pricing algorithms is often a 

significant process given the broad impact and potential unexpected consequences 

due to algorithm flaws and other matters. Our proposed solutions provide better risk 

modelling and more efficient pricing delivery process that easily fits into the insurers’ 

current business model. However, the proposed solution does support the removal of 

existing rating factors from, and addition of new rating factors to, current algorithms. 

This is generally a lower risk compared to a comprehensive structural change to the 

algorithms. Section 3.2 also demonstrated that our proposed solution will generate a 

similar position of market pricing compared to the conventional GLM approach, 

which further substantiates the feasibility of the approach to pricing decision makers. 

The concept of productionising machine learning models in a reliable and efficient 

way is similar to MLOps [19], which seeks to increase automation and improve the 

quality of production models while maintaining compliance with business and 

regulatory requirements. 

 

 

Section 3.3 proposed a solution of modelling risk components using different data to 

address the emerging trends. The practice of building a separate model for each 

component is quite common in the industry. For example, insurers may build claim 

frequency and claim severity models; credit institutions may develop probability of 

default, exposure at default and loss given default models. That said, these models 

are generally trained on the same dataset. Our solution highlighted the potential 

benefits of using different data when building the models in consideration of the 

development nature of the underlying risk. In the example of motor claims, the claim 

frequency generally develops much faster compared to the claim severity. Besides, 

the claim cost tends to be highly correlated with the inflation rate and changes in 

supply chains. Compared to the claim frequency, the trend in the claim cost could be 

anticipated to some extent based on economic and market research. In this case, 

insurers could build the claim severity model using an earlier data period subject to 

adjustments for forward-looking expectations, while building the claim frequency 

model based on more recent experience. The case study demonstrated that simply 

ignoring recent experience may not be ideal, as emerging trends will not be reflected 

in the model. This may have also provided a solution to utilising the experience from 

the period of the COVID-19 pandemic for many industries. However, we do 

acknowledge that each industry is different and special considerations need to be 

made before ingestion of atypical data.  
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