

Whole person. Whole system.

IDSS 2023

12 – 14 November Hobart

12 – 14 November | Hobart

Predicting Health Conditions Using Census Data

Daniel Stone

© Daniel Stone

This presentation has been prepared for the Actuaries Institute 2023 Injury and Disability Schemes Seminar. The Institute Council wishes it to be understood that opinions put forward herein are not necessarily those of the Institute and the Council is not responsible for those opinions.

What we'll cover today

- Hypothesis: Can we use census data to predict health conditions?
- Census data source, data & target
- Data wrangling census data
- Data transformations & variable treatment
- EDA
- Modelling: Baseline, Supervised and AutoML
- Future improvements: Other data enrichment, model refinement, alternate target data

Hypothesis: Can we use census data to predict health conditions?

2021 is the first time Census has collected information on diagnosed long-term health conditions.

Potential Uses:

- Public policy
- Life & Health Insurance
- Disability Insurance

28 Has the person been told by a doctor or nurse that they have any of these long-term health conditions?

- Include health conditions that have lasted or are expected to last for six months or more.
- Include health conditions that:
 - may recur from time to time, or
 - are controlled by medication, or
 - are in remission.
- Mark all that apply, like this: 🛑

(i) Go to www.census.abs.gov.au/questions for more information.

Arthritis

- Asthma
- Cancer (including remission)
- Dementia (including Alzheimer's)
- Diabetes (excluding gestational diabetes)
- Heart disease (including heart attack or angina)
- Kidney disease
- Lung condition (including COPD or emphysema)
- Mental health condition (including depression or anxiety)
- Stroke
- Any other long-term health condition(s)
- No long-term health condition

Hypothesis: Can we use census data to predict health conditions?

- 62 separate tables of data
- Data format not immediately usable = significant data wrangling needed to create model dataset
- Impact of perturbation of census data to protect anonymity
- Model dataset and explainability / usability of model output?

Census data source, data & target

- 2021 Census of Population and Housing General Community Profile Tables https://www.abs.gov.au/census/find-census-data/community-profiles/2021/AUS
- ~62,000 SA1 locations with Median of 400 people
- SA2, SA3, SA4 less granular, but less sparsity of data

Census data source, data & target

	А	В	C D E	F
1 2 3 4 5 6				Australian Bureau of Statistics
7		of Population and Housing		
8 9	General Com	munity Profile Tables	Table population	, status
	G01	Selected Person Characteristics by Sex	Persons	Selected
	G02	Selected Medians and Averages		Considered
12	G03	Place of Usual Residence by Place of Enumeration on Census Night by Age	Persons (excludes overseas visitors)	
13	G04	Age by Sex	Persons	Considered
14	G05	Registered Marital Status by Age by Sex	Persons aged 15 years and over	Selected
15	G06	Social Marital Status by Age by Sex	Persons aged 15 years and over	Considered
16	G07	Indigenous Status by Age by Sex	Persons	
17	G08	Ancestry by Country of Birth of Parents	Responses and persons	
18	G09	Country of Birth of Person by Age by Sex	Persons	Selected
19	G10	Country of Birth of Person by Year of Arrival in Australia	Persons born overseas	
20	G11	Proficiency in Spoken English by Year of Arrival in Australia by Age	Persons born overseas	
21	G12	Proficiency in Spoken English of Parents by Age of Dependent Children	Dependent children in couple families	
22	G13	Language Used at Home by Proficiency in Spoken English by Sex	Persons	
23	G14	Religious Affiliation by Sex	Persons	
24	G15	Type of Educational Institution Attending (Full-time/Part-Time Student Status by Age) by Sex	Persons attending an educational institution	
25	G16	Highest Year of School Completed by Age by Sex	Persons aged 15 years and over who are no longer attending primary or sec	
26	Table Nur	Total Paranal Income (Macklu) by Are by Say nber, Name, Population Cell Descriptors Information +	Decease and 15 water and over	Calactad

Ready Staccessibility: Investigate

Census data source, data & target

Selected Tables of information, (by SA1, Sex and AgeBand)

- AgeBand by Sex
- Registered Marital Status
- Number of Children Ever Born
- Labour Force Status
- Industry of Employment
- Occupation
- Total Personal Income (Weekly)
- Country of Birth of Person
- Highest Year of School Completed
- Highest Non-School Qualification: Level of Education

Target: (by SA1, Sex and AgeBand)

• Type of Long-Term Health Condition

Target – LTH condition

Target – LTH condition Grouping

Data wrangling census data

							WI	DE	fo	rmat		M_1	5_19	_yr_l	Divo	orce	d	
^ SA	1_CODE_2021	M_15_19_yr_Married	÷ M_15_1	9_yr_Sepa	rated [÷] M_15_19_	yr_Divorced 🔅	M_15_19_y	r_Widow	ed [÷] M	_15_19_yr_Neve	r_married 🔅	M_15_19_yr_To	t [÷] M_20_24	_yr_Married	[÷] M_20_24	_yr_Separated	[‡] M_20_24_	yr_Divorced
1	1010210070	sourc	٦ <mark>e</mark>		0	0			0		16		16		0		0	
2	1010210070		0		0	0			0		3		3		0		0	
^ SA1	_CODE_2021 [÷]	variable $\hat{}$	value 🗘	-	SA1_CODE_2021 0	variable	÷ v	alue 🌼	gender	age_band +	marital_statu	is ÷						
1	10102100701	M_15_19_yr_Marrie	0	1	10102100701	M_15_19_yr_Marr	ried	0	Male	15-19	Married		<u> </u>	4			<u>*</u>	4
2	10102100701	M_15_19_yr_Separated	0	2	10102 00701	M 15_19_yr_Sepa	arated	0	Male	15-19	Separated	ige_band	Divorced	Married	Never Married	Separated	Widowed	age_band2
3	10102100701	M_15_1	0		10102100701	M 15_19_yr_Sepa	orced	0	Male	15-19	Divorced	5-19		0 0	12	2	0	0 15-24
4		M_15_19_yr_Widowed	0		10102140701		owed	0	Male	15-19	Widowed	20-24		0 0		3	0	0 15-24
5	10102100701	M_15_19_yr_Never_married	16	5	10102100707	%like	er_married	16	Male	15-19	Never Married	d !5-34		0 6		9	0	0 25-34
6	10102100701	M_15_19_yr_Tot	16	6	10102100701	M_20_24_yr_Marr	ried	0	Male	20-24	Married	15-44	Λ	D :7		3_1_	0	0 35-44
7	10102100701	M_20_24_yr_Married	0	7	10102100701	M_20_24_yr_Sepa	arated	0	Male	20-24	Separated	15-54	\rightarrow	Pivo	T WI	ae	0	0 45-54
8	10102100701	M_20_24_yr_Separated	0	8	10102100701	M_20_24_yr_Divo	orced	0	Male	20-24	Divorced	i5-64	×	6 24)	0	0 55-64
9	10102100701	M_20_24_yr_Divorced	0	9	10102100701	M_20_24_yr_Wide	owed	0	Male	20-24	Widowed	i5-74		0 10	0)	0	4 65-74
0	10102100701	M_20_24_yr_Widowed	0	10	10102100701	M_20_24_yr_Neve	er_married	0	Male	20-24	Never Married	d 15-84		3 7)	0	0 75-84
1	10102100701	M_20_24_yr_Never_married	0							9 10102100701	Female	85+		0 0	0)	0	4 85+
2	10102100701	M_20_24_yr_Tot	0	N / /	ale, 15	:10		rc		0 10102100701	Male	15-19		0 0	16	5	0	0 15-24
3	10102100701	M_25_34_yr_Married	6			, , , ,		JIC	EQ	1 10102100701	Male	20-24		0 0	0)	0	0 15-24
4	10102100701	M_25_34_yr_Separated	0						1	2 10102100701	Male	25-34		0 6	11	1	0	0 25-34
5	10102100701	M_25_34_yr_Divorced	0						13	3 10102100701	Male	35-44		0 5	12	2	0	0 35-44
6	10102100701	M_25_34_yr_Widowed	0						1	4 10102100701	Male	45-54		3 19	9	9	0	0 45-54
7	10102100701	M_25_34_yr_Never_married	11						1	5 10102100701	Male	55-64		0 27	· 4	4	0	0 55-64
8	10102100701	M_25_34_yr_Tot	21						1	6 10102100701	Male	65-74	1	1 11	3	3	0	4 65-74
9	10102100701	M_35_44_yr_Married	5						1	7 10102100701	Male	75-84		0 13		5	0	0 75-84
0	10102100701	M_35_44_yr_Separated	0							B 10102100701	Male	85+		0 0		2		0 85+

LONG format

 \checkmark

Data wrangling census data

Create probabilities list Used in creating sample population

IDSS 2023

Actuaries Institute.

Î	SA1_CODE_2021	¢ gender	age_band2	<pre> Mar_Married_pct </pre>	Mar_Divorced_pct	Mar_Widowed_pct	Mar_Never [÷] Married_pct	⇔ Marital_Status_list_probs
1	10102100701	Female	15-24	0.0000000	0.00000000	0.00000 <mark>0</mark>	1.0000000	c(Married = 0, Separated = 0, Divorced = 0, Widowe []
2	10102100701	Female	25-34	0.4000000	0.00000000	0.0000000	0.6000000	c(Married = 0.4, Separated = 0, Divorced = 0, Wido []
3	10102100701	Female	35-44	0.7000000	0.00000000	0.0000000	0.3000000	c(Married = 0.7, Separated = 0, Divorced = 0, Wido []
4	10102100701	Female	45-54	0.6500000	0.15000000	0.0000000	0.2000000	c(Married = 0.65, Separated = 0, Divorced = 0.15, []
5	10102100701	Female	55-64	0.800000	0.20000000	0.0000000	0.0000000	c(Married = 0.8, Separated = 0, Divorced = 0.2, Wi []
6	10102100701	Female	65-74	0.7142857	0.00000000	0.2857143	0.0000000	c(Married = 0.714285714285714, Separated = 0, Divo []
7	10102100701	Female	75-84	0.7000000	0.3000000	0.0000000	0.0000000	c(Married = 0.7, Separated = 0, Divorced = 0.3, Wi []
8	10102100701	Female	85+	0.0000000	0.00000000	1.000000	0.0000000	c(Married = 0, Separated = 0, Divorced = 0, Widowe []
9	10102100701	Male	15-24	0.0000000	0.00000000	0.0000000	1.0000000	c(Married = 0, Separated = 0, Divorced = 0, Widowe []
10	10102100701	Male	25-34	0.3529412	0.00000000	0.0000000	0.6470588	c(Married = 0.352941176470588, Separated = 0, Divo []
11	10102100701	Male	35-44	0.2941176	0.00000000	0.0000000	0.7058824	c(Married = 0.294117647058824, Separated = 0, Divo []
12	10102100701	Male	45-54	0.6129032	0.09677419	0.0000000	0.2903226	c(Married = 0.612903225806452, Separated = 0, Divo []
13	10102100701	Male	55-64	0.8709677	0.00000000	0.0000000	0.1290323	c(Married = 0.870967741935484, Separated = 0, Divo []
14	10102100701	Male	65-74	0.3793103	0.37931034	0.1379310	0.1034483	c(Married = 0.379310344827586, Separated = 0, Divo []
15	10102100701	Male	75-84	1.000000	0.00000000	0.0000000	0.0000000	c(Married = 1, Separated = 0, Divorced = 0, Widowe []

Data transformations & variable treatment

- Age-band standardization
- Country of birth = Australia vs Overseas
- Avg # children estimate = $1 \times p(1) + 2 \times p(2) + ... + 6 \times p(6+)$
- Personal income estimate = Weighted estimate (midpoint of band)
- Missing data
 - Age 0-14 = (e.g. Never Married = 100%)
 - Other ages = (fill using SA2, SA3, SA4 probabliities)
 - Most NB for Ages 65+

Data transformations & variable treatment

Missing answer means:

- Population count but no data row of variable
- SA1 highest missing due to low count

Approach:

- Merge SA1, SA2, SA3, SA4 tables: by SA code, Age-Band & gender
- Use SA1 probability where available then SA2 then SA3 then SA4

Result:

- Low missing probabilities
- Set As "Missing" and modelled

Note: Same approach for LTH target (fewer missing)

EDA

I did some...

- Mostly around missing data problem Did SA1 still roll up closely to SA2>SA3>SA4
- A bit around how I might group the target
- I was looking to create some engineered groupings of some of the Occupations, Industries, High-School, ...
- But, ultimately decided to let the model figure it out for me and passed all the data through

Modelling: Baseline, Supervised and IDSS 2023 AutoML

Actuaries Institute.

- Predictor inputs
 - 2 categorical factor variables age_band2, gender
 - Approx 85 continuous (0-1) predictor variables
 - 2 engineered features (child count, income estimate)
 - Weights count_pop
- Baseline
 - GLM log transformation of target
 - family = gaussian(link = "identity")
- Supervised GBM
 - distribution = "gaussian"
- AutoML H2O
 - DNF

Modelling: Results (Mental-Illness)

- GLM poor
 - Train, Validation & Test: R2 < 0.10
 - but coefficients easier to interpret
- GBM: Not great but usable
 - Train, Validation & Test: R2 ~ 0.134
 - Some expected features showing importance
 - Scope for

Variable importance (GBM)

10_pct	var	rel.inf
		35.8469864
<u>ත୍</u>	Mar_Married_pct	
	Birth_Elsewhere_pct	
bct	Birth_Australia_pct	
Child_1_pct	NS_Cert_pct	
Ē	PI_400_499_pct	
		2.3439869
bct	PI_300_399_pct	2.2780333
e,	PI_Income_est	
E.		1.8121152
Ind_Retail_Trade_pct	Child_count_est	
Å.	Emp_Not_in_labour_force_pct	
2	Ind_Health_Care_and_Social_Assistance_pct	1.1846223
_	Occ_Community_and_personal_service_workers_pct	
	PI_500_649_pct	
oct	HS_12_pct	
ត្ត	PI_0_pct	
22	HS_9_pct	
.650_799_pct	Mar_Never_Married_pct	0.0862871
<u> </u>		
ā		
Ő.		
g		
PGrad_Deg_pct		1
	0 5 10 15 20 25	30 35

Modelling: So What?

What does this mean?

- 1. Conclusion: We can model LTH conditions using Census data = Better? Yes
- A person with a probability of being married, probability of children, probability of Occupation,, etc has a LTH Mental-Illness probability of 30% (example) = How helpful is this?
- 3. Identify drivers of LTH condition = Age, Gender, Employment Status, Marital Status, Occupations, etc...= e.g. As probability of being married increases, probability of Mental-Illness decreases
- Compare the predicted probability of LTH condition of one (or a group of) SA1 vs Census observed LTH condition to identify areas where experience is worse = Public policy?

Is this model actually meaningful? What about a different approach?

Create sample population

- Principle
 - Expand data to mimic individual-level population
 - Assign predictor labels based on probability
 - Target = still probability of "LTH condition category"
 - Model using 10 categorical variables (and any new engineered features)
- Result
 - Model impact of specific individual features: Age, Gender, Occupation, etc rather than based on a probability (which doesn't make sense for individuals)

Create sample population

Probabilities dataframe

SA1_CODE_2021 ⁺	gender $^{\diamond}$	age_band2 🍦	age_category $\stackrel{\diamond}{}$	count_pop	Marital_Status_list_probs	child_count_list_probs	emp_status_list_probs
3 10102100701	Female	25-34	Adult	12	c(Married = 0.4, Separated = 0, Divorced = 0, Wido []	c(10) = 0.3333333333333333, 11 = 0, 12 = 0.6666666 []	c(Employed = 0.8, Unemployed = 0, 'Not in labour f []
4 10102100701	Female	35-44	Adult	15	c(Married = 0.7, Separated = 0, Divorced = 0, Wido []	c(`0` = 0, `1` = 0, `2` = 1, `3` = 0, `4` = 0, `5` []	c(Employed = 0.5, Unemployed = 0, 'Not in labour f []
5 10102100701	Female	45-54	Adult	16	c(Married = 0.65, Separated = 0, Divorced = 0.15, []	c(`0` = 0.428571428571429, `1` = 0.571428571428571 []	c(Employed = 0.66666666666666667, Unemployed = 0, `N []
6 10102100701	Female	55-64	Adult	28	c(Married = 0.8, Separated = 0, Divorced = 0.2, Wi []	c(`0` = 0, `1` = 0.181818181818182, `2` = 0.242424 []	c(Employed = 0.709677419354839, Unemployed = 0, `N []

$\downarrow \downarrow$ Expand to Aus population

			4
NS_qual_list_probs	Marital_Status 🍦	Child_count 🗧	emp_status_count
c(AdvDip and Dip = 0.5/14285/14285/1, Bach Deg []	Married	1	Not in labour force
c(`AdvDip and Dip` = 0.571428571428571, `Bach Deg`	Divorced	1	Employed
c(`AdvDip and Dip` = 0.571428571428571, `Bach Deg` []	Married	1	Employed
c(`AdvDip and Dip` = 0.571428571428571, `Bach Deg` []	Married	1	Employed
c(`AdvDip and Dip` = 0.571428571428571428571, Bech 200 []		1	Employed
c(`AdvDip and Dip` = 0.571428571428576 Brch 201) [6	ample	1	Employed
c(`AdvDip and Dip` = 0.571428571428571, `Bach Deg` []		1	Not in labour force
c(`AdvDip and Dip` = 0.571428571428571, `Bach Deg` []	Married	0	Employed
c(`AdvDip and Dip` = 0.571428571428571, `Bach Deg` []	Married	1	Employed
c(`AdvDip and Dip` = 0.571428571428571, `Bach Deg` []	Never Married	0	Employed
c(`AdvDip and Dip` = 0.571428571428571, `Bach Deg` []	Divorced	1	Employed
c(`AdvDip and Dip` = 0.571428571428571, `Bach Deg` []	Married	1	Not in labour force
c(`AdvDip and Dip` = 0.571428571428571, `Bach Deg` []	Never Married	0	Employed
c(`AdvDip and Dip` = 0.571428571428571, `Bach Deg` []	Married	0	Not in labour force
c(`AdvDip and Dip` = 0.571428571428571, `Bach Deg` []	Married	1	Not in labour force

sample_runif_combined <- function(combined_field) {</pre>

extract the input list and probabilities from the combined field input_list <- names(combined_field) probs <- unname(combined_field)</pre>

call the sample function using the extracted input list and probabilities sample(input_list, size = 1, prob = probs)

IDSS 2023

Actuaries Institute.

call the sample_runif_combined function for each row of dt_tmp3
dt_tmp3[, Marital_Status := sapply(Marital_Status_list_probs,
sample_runif_combined)]

Future improvements

IDSS 2023

- Alternate data approach
 - Create sample population
- Model refinement
 - More variables
 - More sophisticated models (neural network) and fine tuning
 - Model at SA2 (or higher) rather than SA1?
- Other data enrichment
 - SEIFA scores & deciles (e.g. IRSAD)
 - Other health data
- Alternate data source
 - Access to enhanced ABS Census data

Course – End-to-End Data Science with R

Course co-author with Rene Essomba www.educative.io

Learning, labs and project

* Will post a link once course available.

Educative: Intera	ctive Courses fo X +	
← → C ☆	🔒 educative.io/collection/5371761687789568/5793153375535104/draft 🛛 👁 🍳 🖻	\$
<mark>>_</mark> edu	ucative	
My Learning		
Q	INTERACTIVE COURSE 🗍	Dau
Explore	End-to-End Data Science with R	
New L	၊ Intermediate 🗉 35 Lessons 👏 Omin 🧕 Certificate of Completion	
CloudLabs	Comment Notifications	9
Personalized Paths		
痧	Course Overview	P
Projects	Our data science course using R will introduce you to the fundamentals of data science, including importing and exploring data, basic statistics, and building machine learning models. You'll also learn about unsupervised learning	
~7	techniques like clustering and anomaly detection, as well as advanced topics like natural language processing (NLP)	
Skill Paths	and image processing. You'll get hands-on experience working with big data and cloud computing platforms as well as applying your skills to a real-world data science project. You'll also learn about time series analysis and	
Ċ	reinforcement learning. By the end of the course, you'll have the skills and knowledge to become a data	
Assessments	scientist. <u>Show Less</u>	S

S

٤

IDSS 2023

Thank you

IDSS 2023

12 – 14 November Hobart