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Hypothesis: Can we use census data to IDSS 2023 Qﬁm
predict health conditions?

2021 is the first time Census 28 Has the person been told by a doctor or nurse AR
: : that they have any of these long-term health AR
has collected information on iy
conditions?

diagnosed long-term health Cancer (including remission)

conditions. « Include health condlt.lons that have lasted or are Dementia (inchding
expected to last for six months or more. Alzheimer’s)
. « Include health con.ditions Fhat: Diabetes (excluding

Potential Uses: - may recur from time to time, or gestational diabetes)
- Public policy -are Fontro!leq by medication, or Heart disease (including

. - arein remission. heart attack or angina)
* Life & Health Insurance » Mark all that apply, like this: Kidney disease
« Disability Insurance s :

@ Go to www.census.abs.gov.au/questions for more Lung condition (including
information. COPD or emphysema)

Mental health condition
(including depression or
anxiety)

Stroke

Any other long-term
health condition(s)

No long-term health
condition
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Hypothesis: Can we use census
data to predict health conditions?

62 separate tables of data

« Data format not immediately usable = significant data
wrangling needed to create model dataset

* Impact of perturbation of census data to protect
anonymity

« Model dataset and explainability / usability of model
output?
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Census data source, data & target s

« 2021 Census of Population and Housing - General
Communlty PrOflle TableS https://www.abs.gov.au/census/find-census-data/community-profiles/2021/AUS

 ~62,000 SA1 locations with Median of 400 people
« SA2, SA3, SA4 less granular, but less sparsity of data

SA1 - count of persons Missing answers - Marital Status
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https://www.abs.gov.au/census/find-census-data/community-profiles/2021/AUS
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Census data source, data & target

A B C D E F
1
2
3 Australian
4 Bureau of
s Statistics
6
7 |2021 Census of Population and Housing
8 |General Community Profile Tables
9 |Table Number [~|Table Name + | Table population - - - status -
10 |Go1 Selected Person Characteristics by Sex Persons Selected
11 |Go2 Selected Medians and Averages Considered
127 G03 Place of Usual Residence by Place of Enumeration on Census Night by Age Persons (excludes overseas visitors)
13 |Go4 Age by Sex Persons Considered
14 |G05 Registered Marital Status by Age by Sex Persons aged 15 years and over Selected
15 |Go6 Social Marital Status by Age by Sex Persons aged 15 years and over Considered
16 |GO7 Indigenous Status by Age by Sex Persons
177 G08 Ancestry by Country of Birth of Parents Responses and persons
18 |Gog Country of Birth of Person by Age by Sex Persons Selected
19_ G10 Country of Birth of Person by Year of Arrival in Australia Persons born overseas
20_ G11 Proficiency in Spoken English by Year of Arrival in Australia by Age Persons born overseas
21 | G12 Proficiency in Spoken English of Parents by Age of Dependent Children Dependent children in couple families
22_ G13 Language Used at Home by Proficiency in Spoken English by Sex Persons
23_ G14 Religious Affiliation by Sex Persons
24 |G15 Type of Educational Institution Attending (Full-time/Part-Time Student Status by Age) by Sex Persons attending an educational institution
25_ G16 Highest Year of School Completed by Age by Sex Persons aged 15 years and over who are no longer attending primary or sect Selected
e A Tatal Darecanal nrama (AL Lol b Aras bar D Anad AE vnare and aear Cal ol
Table Number, Name, Population Cell Descriptors Information | ® [4]
Readv S Arcecsihilite: Investinate
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Census data source, data & target petyanes

Selected Tables of information, (by SA1, Sex and AgeBand)
 AgeBand by Sex

* Registered Marital Status

*  Number of Children Ever Born

« Labour Force Status

* Industry of Employment

*  Occupation

» Total Personal Income (Weekly)

«  Country of Birth of Person

» Highest Year of School Completed

« Highest Non-School Qualification: Level of Education

Target: (by SA1, Sex and AgeBand)
» Type of Long-Term Health Condition
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Target — LTH condition
Many LT health conditions

nnnnnnn

) LT Health Condition
Focus this research on

. Arthritis

“Preventable”
°°°°°°° . Asthma
. Cancer
Dementia
5 Diabetes
Heart disease
""""""" Kidney disease
Lung candition
uuuuuu Mental-lliness
. Other LT conditions
. Stroke

0

Sum of t LTH

0-14 15-24 25-34 35-44 45-54 55-64 65-74 75-84 85+
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Target — LTH condition Grouping

LT Health Condition

. Cancer

. Lifestyle, Diet, and Exercise

" Lifestyle, Diet,.and
Related Conditions:

- Diabetes . Mental lliness
- Heart Disease | Other
- Stroke

- Kidney Disease

Mental lliness-

0-14 15-24 25-34 35-44 45-54 55-64 65-74 75-84 85+




Data wrangling census data

WIDE format M_15_19_yr_Divorced

-

SA1_CODE_2021 M_15_19_yr_Married M_15_19_yr_Separated M_15_19_yr_Divorced M_15_19_yr Widowed M_15_19_yr_Never_married M_15_19_yr_Tot M_20_24 yr_Married M_20_24 yr_Separated M_20_24 yr_Divorced
1 10102100701 S O U rC)e 0 0 0 16 16 0 0 0
2 10102100702 0 0 0 0 3 3 0 0 0
“ SA1_CODE_2021 variable value “ SA1_CODE_2021 variable value gender age_band marital_status
1 10102100701 | M_15_19_y7 0 1 10102100701 | M_15_19_yr_Married 0 Male 15-19 Married
2 10102100701 M_15_19_yr_Separsted 0 2 101 111 1519 yr_Separated 0 Male 15-19 Separated ige_band Divorced Married :‘::i[m Separated o wed age_band2
3 10102100701 | M_1 5,1m@“' 0 1-31En&i\r§_ e_g _yr_Divorced 0 Male 15-19 Divorced 15419 2 2 12 0 0 15-24
1 10102100701 | M_15_19_yr_Widowed 0 10T 71 igayed 0 Male 15-19 Widowed 1024 ° ° 3 ° o 1524
5 10102100701 | M_15_19_yr_Never_married 18 5 w-asltﬁi %[mmamed 16 | Male 15-19 Never Married 1534 o s 5 5 o 25.34
3 10102100701 | M_15_19 yr_Tot 18 6 10102100701 | h_20_24_yr_Married 0 Male 2024 Married 1544 - 7 o3 5 5 3544
7 10102100701 | M_20_24 yr_Married [ 7 10102100701 | 1_20_24 yr_Separated 0 Mae 20-24 Separated 1554 P | V QT Wl d e 2 0 4534
8 10102100701 | M_20_24 yr_Separated 0 8 10102100701 | M_20_24_yr_Divorced 0 Male 20-24 Divorced 564 6 24 0 2 0 55-64
9 10102100701 | M_20_24 yr Divorced 0 9 10102100701 | M_20_24_yr_Widowed 0 Male 20-24 Widowed 1574 o 10 0 0 4 g5.74
10 10102100701 | M_20_24 yr_Widowed o 10 10102100701 | M_20_24 yr_Never_married 0 Male 20-24 Mever Married 1554 3 7 0 0 0 75-84
11 10102100701 | M_20_24 yr_Mever_married o 9 10102100701 Female 85+ 0 0 0 0 4 g5+
e 10102100701 | M._20_24.yr_Tot ° M O | e ] 5_ ] 9 D i V O rC e du 10102100701 Male 15-19 0 0 16 [ o 15-24
13 10102100701 | M_25_34 yr_Married g ’/ / 11 10102100701 Male 2024 0 0 0 0 0 1524
14 10102100701 | M_25_34 yr_Separated ° 12| 10102100701 Male 2534 0 3 it 0 0 2534
15 10102100701 | M_25_34 yr Divorced ° 13 10102100701 Male 35.44 0 5 12 0 0 35.44
16 10102100701 | M_25_34 yr Widowed ° 14 10102100701 Male 4554 3 19 g 0 0 4534
17 10102100701 | M_25_34_yr_Never_married 1 o 010210070 Male . 2 a7 . o 0| 5564
s 10102100701 | M_25_34 yr Tot 2 16 10102100701 Male £5-74 it it 3 0 4 g5.74
e 10102100701 | M_35_44 yr_Married s 17 10102100701 Male 75-84 0 3 0 0 o 7584
20 10102100701 | M_35_44 yr_Separated ° 18 10102100701 Male 55+ 0 0 0 0 o 85+

LONG format
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Data wrangling census data ez

Create probabilities list
Used in creating sample
population

Calculate probabilities
Used in modelling

SA1_CODE_2021 gender age_band2 Mar_Married_pct Mar_Divorced_pct Mar_Widowed_pct :::;:::U;rct Marital_Status_list_probs
1 10102100701 Female 15-24 (0.0000000 0.00000000 D.DUDDDEE> 1.0000000 | c{Married = 0, Separated = 0, Divorced = J, Widowe [...]
2 | 10102100701 Female 25-34 0.4000000 0.00000000 0.0000000 0.6000000  ciMarried = 04, Separated = 0, Divorced = 0, Wido [..]
3 10102100701 Female 35-44 0.7000000 0.00000000 0.0000000 03000000  cfMarried = 0.7, Separated = 0, Divorced = 0, Wida [..]
4 10102100701 Female 45-34 0.6500000 0.15000000 0.0000000 0.2000000  ciMarried = 0.65, Separated = 0, Divorced = 015, [.]
5 10102100701 Female 55-64 0.5000000 0.20000000 0.0000000 0.0000000  c{Married = 0.5, Separated = 0, Divorced = 0.2, Wi [..]
6 10102100701 Female £5-74 07142857 0.00000000 0.2857143 0.0000000  c{Married = 0.714285714255714, Separated = 0, Divo [.]
7 10102100701 Female 75-54 0.7000000 030000000 0.0000000 0.0000000  c{Married = 0.7, Separated = 0, Divorced = 0.3, Wi [.]

8 10102100701 Female 85+ 0.0000000 0.00000000 1.0000000 0.0000000  ciMarried = 0, Separated = 0, Diverced = 0, Widowe [..]
9 10102100701 Male 15-24 (0.0000000 0.00000000 0.0000000 1.0000000 | c{Married = 0, Separated = 0 Divorced = 3, Widowe [..]
10 10102100701 Male 25-34 03529412 0.00000000 0.0000000 06470588 ciMarried = 0.352941176470558, Separated = 0, Divo [.]
11 10102100701 Male 35-44 0.2941176 0.00000000 0.0000000 07038824 c[Marred = 0.29411764703585824, Separated = 0, Divo [.]
12 10102100701 Male 45-34 06129032 0.09677419 0.0000000 02903226  ciMarried = 0.612903225806452, Separated = 0, Divo [.]
13 10102100701 Male 35-04 05709677 0.00000000 0.0000000 01290323  cfMarried = 0.6709677419334584, Separated = 0, Divo [.]
14 10102100701 Male £5-74 03793103 037931034 0.1379310 01034483 c{Married = 0.379310344827586, Separated = 0, Divo [.]

15 10702100701 Male 75-54 1.0000000 0.00000002 0.0000000 0.0000003 | c(Married = 1, Separated = 0, Divorced = 0, Widowe [...]
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Age-band standardization
Country of birth = Australia vs Overseas
Avg # children estimate = 1xp(1) + 2xp(2) + ... + 6xp(6+)
Personal income estimate = Weighted estimate midpoint of bana)
Missing data
— Age 0-14 = (e.g. Never Married = 100%)
— Other ages = (fill using SA2, SA3, SA4 probabliities)
* Most NB for Ages 65+ iyl



Data transformations & variable IDSS 2023
treatment

Missing answer means:

. Population count but no data Missing answers - Marital Status
row of variable 70%

. SA1 highest missing due to low

Actuaries
Institute.

count 60%

Approach: 50%

*+ Merge SA1, SA2, SA3, SA4 40% —SAl
tables: by SA code, Age-Band & —SA2
gender 30% ~cn3

* Use SA1 probability where
available then SA2 then SA3 20% SA4
then SA4

10%
—_— —

Result: 0%

*  Low missing probabilities 15-24 2534 3544 4554 5564 6574  75-84 85+

+ SetAs “Missing” and modelled

Note: Same approach for LTH target
(fewer missing)
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EDA

| did some...

* Mostly around missing data problem — Did SA1 still roll
up closely to SA2>SA3>SA4

« Abit around how | might group the target

* | was looking to create some engineered groupings of
some of the Occupations, Industries, High-School, ...

« But, ultimately decided to let the model figure it out for
me and passed all the data through



Modelling: Baseline, Supervised and [JESEIS I
AutoML

* Predictor inputs
— 2 categorical factor variables age band2, gender
— Approx 85 continuous (0-1) predictor variables
— 2 engineered features (child count, income estimate)
— Weights — count_pop

* Baseline
— GLM - log transformation of target
— family = gaussian(link = "identity")

* Supervised - GBM
— distribution = "gaussian®

e AutoML — H20
— DNF
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Modelling: Results (Mental-lliness)
. GLM poor Variable importance (GBM)

— Train, Validation & T var  rel.inf
. c == gender 35. 8469864
Test: R2<0.10 ¢ F Mar_Married_pct 16.8750674
. . . Birth_Elsewhere_pct 13.0100799
— but coefficients 5 Birth_australia_pct 11.6783598
. . o N5_Cert_pct 4.2162677
easier to interpret < PI_400_499_pct 3.2040927
o age_band2 2.3439869
g PI_300_399_pct 2.2780333
P PI_Income_est 2.1926366
« GBM: Not great but £ HS_10_pct 1.8121152
= Child_count_est 1.4829408
usable g Emp_Not_in_labour_force_pct 1.2256054
- Ind_Health_care_and_social_Assistance_pct 1.1846223
—_ i i i B occ_community_and_personal_service_workers_pct 0.9766100
Train, Validation & PI_500_649_pct 0.9456033
Test: R2 ~0.134 5 HS_12_pct 0.3869555
o PI_O_pct 0.1460742
— ~ H5_9_pct 0.1076255
Some eXpeCte_d g Mar_Never_Married_pct 0.0862871
features showing T
importance &
a
— Scope for E
E [ I I I I I I 1
|
% 0 5 10 15 20 25 30 35
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Modelling: So What? s

What does this mean?
1. Conclusion: We can model LTH conditions using Census data = Better? Yes

2. A person with a probability of being married, probability of children, probability
of Occupation, ...., etc has a LTH Mental-lliness probability of 30% (example) =
How helpful is this?

3. Identify drivers of LTH condition = Age, Gender, Employment Status, Marital
Status, Occupations, etc...= e.g. As probability of being married increases,
probability of Mental-lliness decreases

4. Compare the predicted probability of LTH condition of one (or a group of) SA1
vs Census observed LTH condition to identify areas where experience is worse
= Public policy?

Is this model actually meaningful? What about a different approach?
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Create sample population

* Principle
— Expand data to mimic individual-level population
— Assign predictor labels based on probability
— Target = still probability of “LTH condition category”

— Model using 10 categorical variables (and any new
engineered features)

 Result

— Model impact of specific individual features: Age,
Gender, Occupation, etc rather than based on a
probability (which doesn’t make sense for individuals)
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Create sample population

Probabilities dataframe

SA1_CODE_2021 gender age_band2 age_category count_pop Marital_Status list_probs «child_count_list_probs emp_status_list_probs
3| 10102100701 Female 25-34 Adult 12 c[Married = 0.4, Separated = 0, Divorced = 0, Wido [.] ¢'0" =10.333333333333333, 1" =0, 2" = 0.666ERA [..] c{Employed = 0.5, Unemployed = 0, "Not in labour f [...]
4 10102100701 Female 35-44 Adult 15 cMarried = 0.7, Separated = 0, Divorced = 0, Wido [.] 0=0,1=02=1"3=09=0"5[.] c{Employed = 0.5, Unemployed = 0, "Mot in labour f [..]
5 10102100701 Female 45-34 Adult 16  c{Married = 0.65, Separated = 0, Divorced = 015, [.] o'’ = 0.428571428571428, 1" = 0.571428571428571 [ | ciEmployed = 0.66666666666666T, Unemplayed = 0, "N [w]
& 10102100701 Female 55-54 Adult c[Married = 0.5, Separated = 0, Divorced = 0.2, Wi [..] c0°=0,"1"=01818158161618182, ‘2" = 0.242424 [. c(Employed = 0.709677419354539, Unemployed = 0, "N [..]

@ Expand to Aus populo’non

NS_qual_list_probs
C[ AdvLip and Uip = U5/ 142857 1428241, Bach Ueg |.

arital_Status Child_count emp_status_count . . i . .
arEd 1 NGT I TEb00r ToTeE sample_runif_combined <- function(combined_field) {

. corced 1 Employed # extract the input list and probabilities from the combined field

c('AdvDip and Dip" = 0.571428571428571, "Bach Deg’ D)

c[AdvDip and Dip" = 0.571428571428571, ‘Bach Deg’ [..] | Married 1 Employed input_list <- names(combined_field)

" AdvDip and Dip’ = 0.571428571428571, Bach Deg 1 Marrl d 1 Employed probs <- unname(combined_field)

c['AdvDip and Dip" = 0.5714285714, ZAﬂSBSch; b e | S 1 Employed

< AdvDip and Dip’ =,3|5?1¢2357.4US Fﬁg S ple . Emplayed # call th? samplle fu.nction using the extracted input list and probabilities
c['AdvDip and Dip’ = 0.571428571428571, Bach ] | Mever Matried 1 Mat in |abour farce sample(input_list, size = 1, prob = probs)

c('AdvDip and Dip" = 0.5714285714258571, "Bach Deg’ [..]  Married ] Employed }

¢('AdvDip and Dip" = 0.571428571428571, "Bach Deg’ [.]  Married 1 Employed

c[ AdvDip 3nd Dip’ = 0.571428571428571, ‘Bach Deg’ [.]  Mever Married 3 Emplayed # call the sample_runif_combined function for each row of dt_tmp3
<[ AdvDip and Dip’ = 0.571428571428571, ‘Bach Deg’ [.] | Divorced 1 Employed dt_tmp3[, Marital_Status := sapply(Marital_Status_list_probs,
¢'AdvDip and Dip" = 0.571428571428571, "Bach Deg’ [.]  Married 1 Mot in labour force sample_runif_combined )]

¢ AdvDip and Dip" = 0.571428571428571, "Bach Deg’ [.] Mever Married 0 Emplaoyed

c'AdvDip and Dip” = 0.5714285714258571, "Bach Deg’ [..] = Married ] Mot in labour force

c('AdvDip and Dip" = 0.5714285714258571, "Bach Deg’ [..]  Married 1 Mot in labour force
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Alternate data approach
— Create sample population

Model refinement
— More variables
— More sophisticated models (neural network) and fine tuning
— Model at SA2 (or higher) rather than SA1?

Other data enrichment
— SEIFA scores & deciles (e.g. IRSAD)
— Other health data

Alternate data source
— Access to enhanced ABS Census data
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Course — End-to-End Data Science with R et

Course Content Expand All Sections

Course CO_OUThor Wi-l-h Rene Essombo 1 Introduction to Data Science and R “
www.educative.io

Learning, IabS and prOjeCt 2  Data Exploration and Visualization W
* Will post a link once course available.

B Educative: Interactive Courses ©© X =

3 Supervised Learning ~
<« C t @ educativeio/collection/5371761687789566/5793 153375535104/ draft o~ Q12 ¥ & 4 Lessons
educative
4 Unsupervised Learning W
My Learning
Q INTERACTIVE COURSE D “ 5 L
Expls 1 1
&=l End-to-End Data Science with R
g i1l Intermediate [E 35 Lessons O Omin 9 Certificate of Completion L] Natural Language Processing e
3 Lessons
CloudLabs
= Comment Notifications @) s ;  Image Learning v
Personalized s
Paths ‘
. -
8 Course Overview P g8 Reinforcement Learning 2%
Projects Our data science course using R will introduce you to the fundamentals of data science, including importing and 3 Lessons
exploring data, basic statistics, and building machine learning models. You'll also learn about unsupervised learning
A techniques like clustering and anomaly detection, as well as advanced topics like natural language processing (NLP) i ;
) R q Big Data and Cloud Computing '
Skill Paths and image processing. You'll get hands-on experience working with big data and cloud computing platforms as well R
as applying your skills to a real-world data science project. You'll also learn about time series analysis and T T
reinforcement learning. By the end of the course, you'll have the skills and knowledge to become a data
ot infi L ing. By th d of th 'Wh he skill: dk led b d E

Assessments scientist. Show Less

Project

| & Project Work
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