

Whole person. Whole system.

IDSS 2023

12 – 14 November Hobart 12 – 14 November | Hobart

Leveraging unstructured text data to improve a statistical lifetime cost of claim model

IDSS 2023

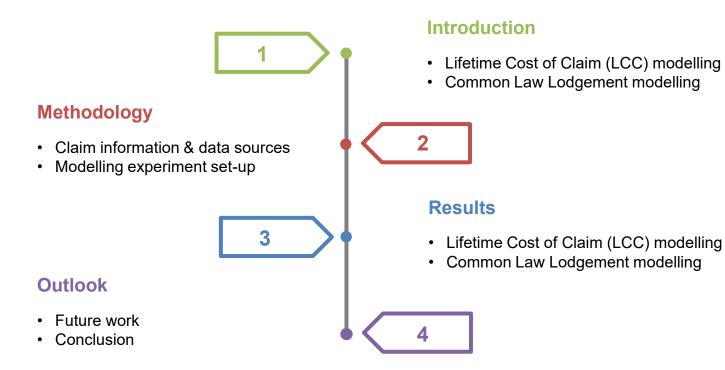
Actuaries

Michael McLean, Nikolay Nikolaev

© Finity Consulting

This presentation has been prepared for the Actuaries Institute 2023 Injury and Disability Schemes Seminar. The Institute Council wishes it to be understood that opinions put forward herein are not necessarily those of the Institute and the Council is not responsible for those opinions.

Table of Contents



Introduction

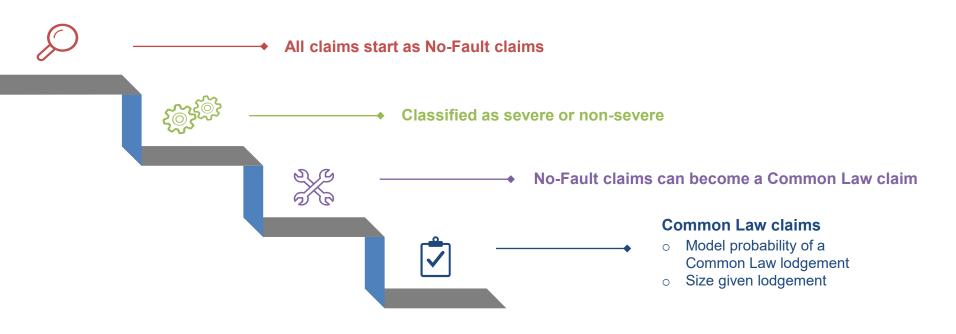
Lifetime Cost of Claim (LCC) model for accident compensation claims

- Case reserves
- Claim management
- Strategic intervention

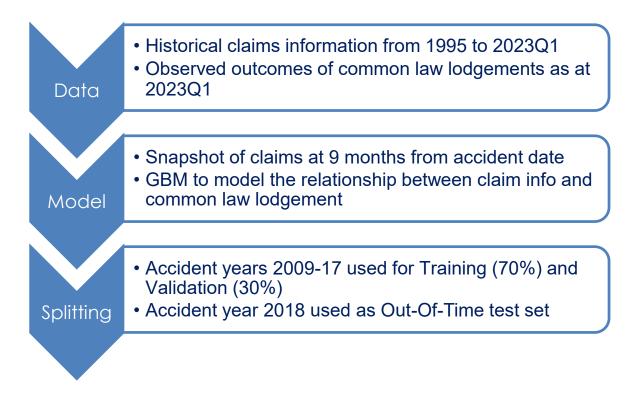
Our research

- Can unstructured text add value when modelling LCC?
- Test on one component of the LCC model we built for a large Scheme

Lifetime Cost of Claim modelling



Predicting the probability of CL lodgement



Data

Claims header file All info relating to claimant, injury

Payments Transactions payment data

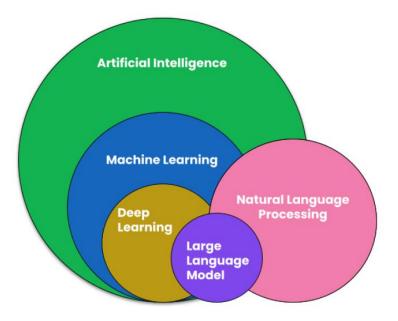
IDSS 2023

Actuaries Institute.

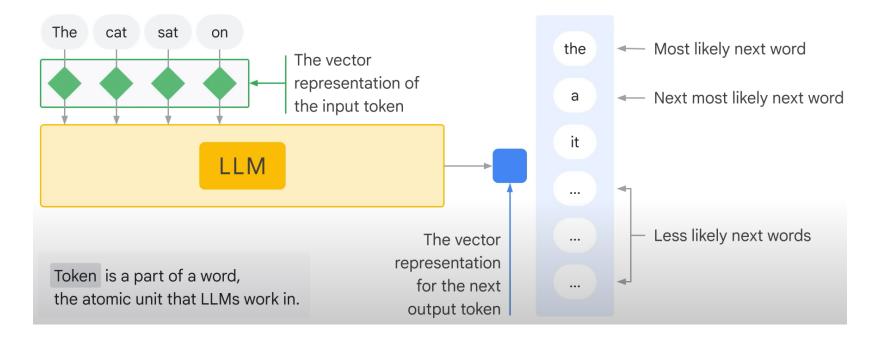
Road safety data Info on crash, vehicles, drivers involved, drugs, alcohol

Free form text data Five distinct types (e.g. case notes, external documents, phone calls) Census data SEIFA index, vehicle density, remoteness

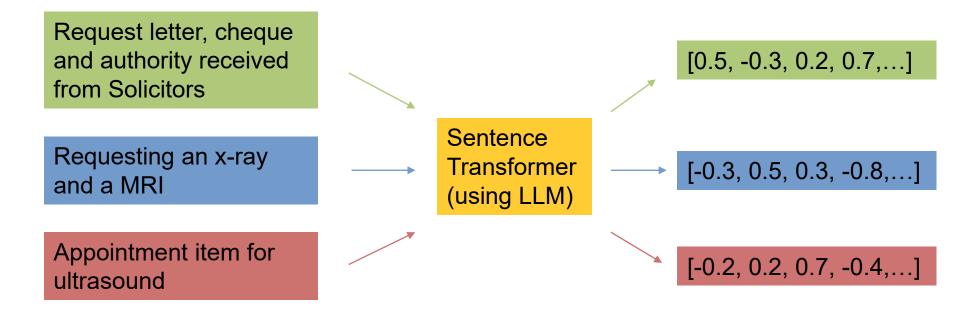
Large Language Models



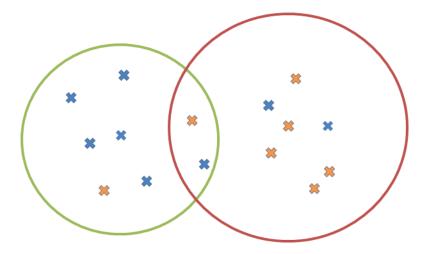
Large Language Models



Sentence embeddings



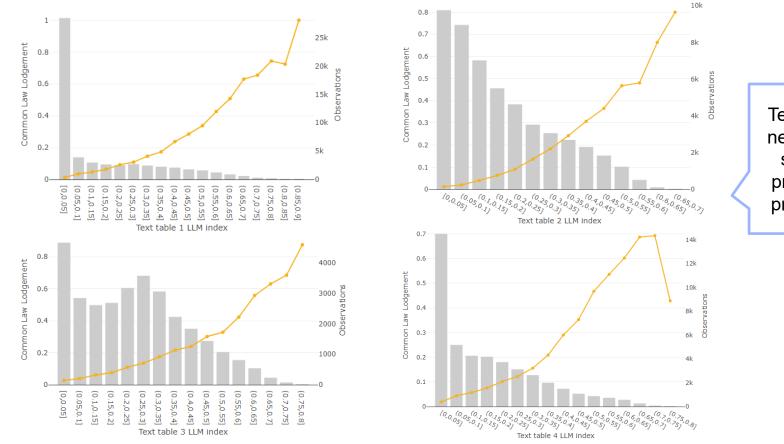
Use LLM for finding similar claims



Intuition: Can historical claims with similar claim descriptions help predict the probability of a common law claim?

- Embed claim texts into numerical vectors that capture the meaning using open source LLMs (mpnet, gte)
- Average embeddings per claim and text type to represent claim as a whole
- For each claim
 - Find other claims that have similar text descriptions
 - Derive a score based on how many neighbours lodged a CL
- Use the derived score as a predictor in the modelling

LLM based text score



Text-based neighbours strongly predict CL probability

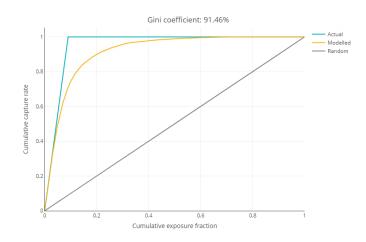
Experimental setup

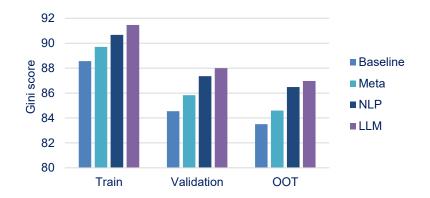
	Features					
Models	Structured data	Text meta-data	NLP	Text data embeddings		
#1: Baseline						
#2: Meta						
#3: NLP						
#4: LLM						

Evaluation: Gini coefficient

Results

- Model performance improves with each new set of features
- Results demonstrate the strong predictive power of claim text information
- Using LLM features results in the strongest model



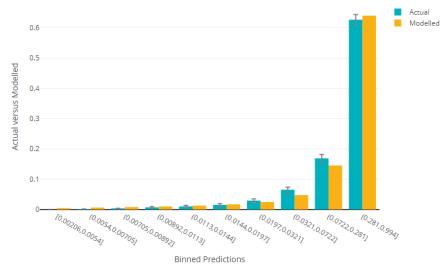


	% Common Law Lodgements Identified					
Validation	% of claims	Baseline	Meta	NLP	LLM	
	2%	20%	20%	20%	20%	
	5%	42%	43%	45%	45%	
	10%	64%	64%	68%	68%	
	25%	87%	89%	89%	91%	

Risk differentiation

- LLM based model achieves the best results and validates well on unseen data
- Well calibrated predictions for the probability of a claim to become a common law claim
- Strong risk differentiation achieving a high model lift

Validation

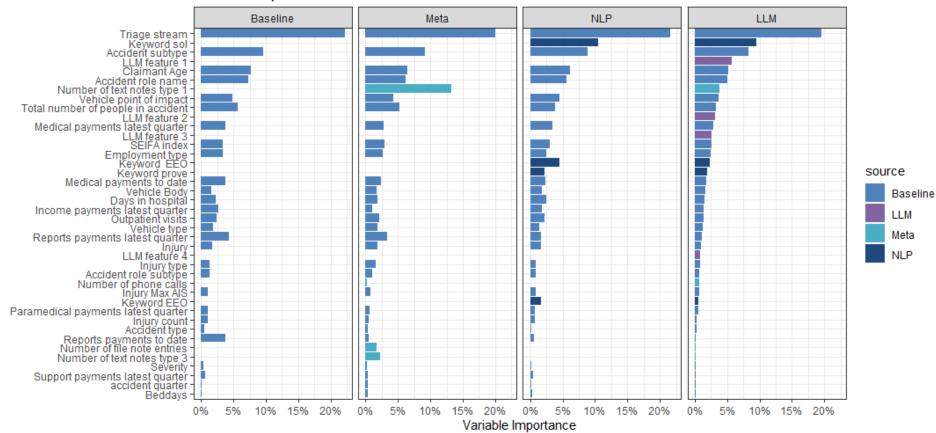


Feature Importance

IDSS 2023

Actuaries Institute.

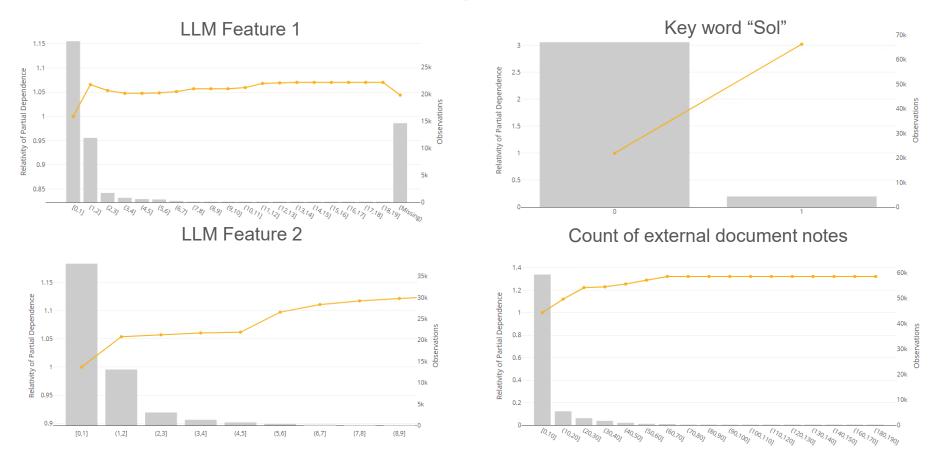
Variable Importance



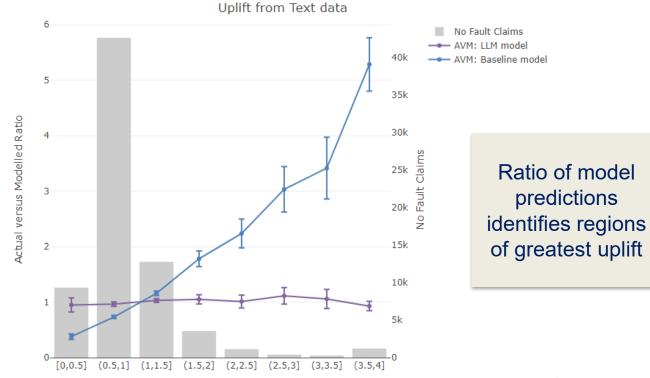
Partial Dependence

IDSS 2023

Actuaries Institute.



Model Comparison



Ratio of LLM Model and Baseline Model predictions

....

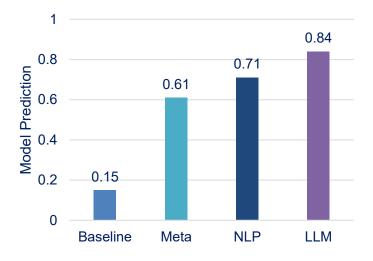
Example – Claim 1

Outcome: Common Law Lodgement

Injury detail
Role
Total sum to date
Days in hospital
Age
Text records counts
LLM 10-NN scores
Common keywords

Fractures – Limb Passenger/Pillion \$24k 9 19 0-20 0.7

TAXI, Support, Form, General, approval



Example – Claim 2

Outcome: Common Law Lodgement

Injury detail
Role
Total sum to date
Days in hospital
Age
Text records counts
LLM 10-NN scores
Common keywords

Brain Injury (Mild) / Head Injury (III defined)

Bicyclist

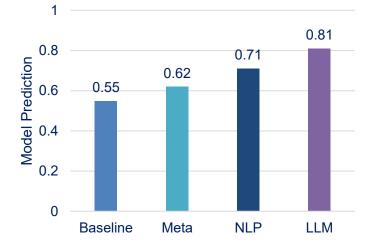
\$109k

23 49

70+

0.9

Prove, Uploaded, Received, Correspondence, Benefits, Care, Dr, Report, LOE, Form, Rehabilitation, Support, Treating, Certificate, Services, RTW, letter, Practitioner, employer, Income

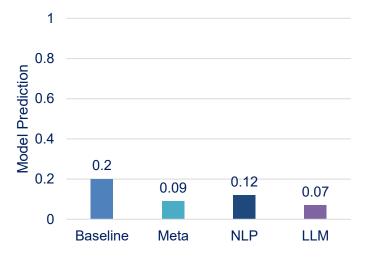


Example – Claim 3

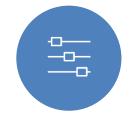
Outcome: No Common Law Lodgement

Injury detail	Fractures – Limb
Role	Bicyclist
Total sum to date	\$83k
Days in hospital	11
Age	51
Text records counts	0-7
LLM 10-NN scores	0.1
NLP	Prove
Common keywords	Police, Report, Ind

e, Report, Incident, Confidential



Future work



Utilize more unstructured text data – documents, e-forms, medical reports etc. Fine-tuning the large language model or method of aggregation of the embeddings Use commercial private versions of more powerful models (e.g. chat GPT) instead of the smaller open source LLMs Apply to other components of lifetime cost of claims model (e.g. cost of No-Fault claims)

Conclusions

- Unstructured text data significantly improves compensation claims
 predictive model performance
- Schemes, insurers and claims service providers have a valuable asset which can be utilized at scale with potential significant improvements in claim management and reserving
- Large Language Models are a powerful tool for extracting signal out of unstructured data
- LLM field is emerging and improving rapidly expect better results in the future with advances in technology

Thank you

IDSS 2023

12 – 14 November Hobart