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Important notice for all participants

This meeting is being conducted in accordance with Institute’s Code of Conduct and attended by

members in their professional capacity.

It is acknowledged that professional members in their employed capacity, may be active market

parficipants in their respective industries who may compete with each other as defined by competition

law.

Parficipants are, therefore, reminded that in accordance with their competition law compliance

obligations they should nof:

« discuss any matter that may be perceived as being cooperation by competitors in a market to
influence that market;

« discuss any matters that could be regarded as fixing, maintaining or conftrolling prices, allocation of
customers or territories, coordinating bids and/or restricting output or acquisitions in any
circumstances;

Q « share commercially sensitive information relating to their employer; or

» share information for an anti-competitive purpose.
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Introduction

= Lifetime Cost of Claim (LCC) model for accident compensation claims
« Case reserves

« Claim management

e Strategic intervention

Our research
e Can unstructured text add value when modelling LCC?
« Test on one component of the LCC model we built for a large Scheme
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Lifetime Cost of Claim modelling

p + All claims start as No-Fault claims

+ Classified as severe or non-severe

e

+ No-Fault claims can become a Common Law claim

Common Law claims

o Model probability of a
Common Law lodgement
o Size given lodgement

L 4
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Predicting the probability of CL lodgement

* Historical claims information from 1995 to 2023Q1
» Observed outcomes of common law lodgements as at 2023Q1

» Snapshot of claims at 9 months from accident date

« GBM to model the relationship between claim info and common law
lodgement

 Accident years 2009-17 used for Training (70%) and Validation (30%)
» Accident year 2018 used as Out-Of-Time test set

Q
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Data

P

Claims header file Payments Road safety data
All info relating to claimant, Transactions payment Info on crash, vehicles,
injury data drivers involved, drugs,

alcohol

Free form text data Census data

Five distinct types (e.g. SEIFA index,

Q case notes, external vehicle density,
Actuaries documents, phone calls) remoteness
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Large Language Models

the  <— Most likely next word

I | ' ' The vector
‘ ‘ ‘ ‘ representation of .
the input token a <— Next most likely next word
LLM _.-

The vector — Less likely next words

) representation
Token is a part of a word,
) i ) for the next
the atomic unit that LLMs work in.

Q output token
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Sentence embeddings

S e——

Sentence

| Tasomer 0305080807

(using LLM)

i 10202070400
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Use LLM for finding similar claims

Intuition: Can historical claims with
similar claim descriptions help predict
Q the probability of a common law claim?
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Embed claim texts into numerical vectors that
capture the meaning using open source LLMs
(mpnet, gte)

Average embeddings per claim and text type
to represent claim as a whole

For each claim

— Find other claims that have similar text
descriptions

— Derive a score based on how many neighbours
lodged a CL
Use the derived score as a predictor in the
modelling
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Text table 3 LLM index

Common Law Lodgement

Comrmon Law Lodgement
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Experimental setup

Features

Models

#1: Baseline

#2: Meta

#3: NLP

#4: LLM

Q

Structured data Text meta-data

NLP

Text data
embeddings

Evaluation: Gini coefficient
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Results

Q

Model performance improves with each new
set of features

Results demonstrate the strong predictive
power of claim text information

Using LLM features results in the strongest
model

Gini coefficient: 91.46%

— Actual
Modelled
——— Random

Cumulative capture rate

Actua ri EIo 0.2 0.4 0.6 0.8 1
Institut1 Cumulative exposure fraction
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% Common Law Lodgements Identified
. % of .
Validation ] Baseline Meta NLP LLM
claims
2% 20% 20% 20% 20%
5% 42% 43% 45% 45%
10% 64% 64% 68% 68%
25% 87% 89% 89% 91%




Risk differentiation

 LLM based model achieves the best
results and validates well on unseen
data

« Well calibrated predictions for the
probability of a claim to become a
common law claim

 Strong risk differentiation achieving a
high model lift

Q
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Lift on Actual: Inf%, Lift on Modelled: 14605.97%, Correlation: 99.84%
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Feature Importance

Variable Importance

Triage stream
Keyword sol 7
Accident subtype T
LLIW feature 17
Claimant Age
Accident role name
Mumber of text notes type 1
Vehicle point of impact
Total number of people in accident 7
LLM feature 21
Medical payments latest quarier 1
LLM feature 3 1
E ol FA [[ndex-
mploymen g ]
ey}u:-.rnr IE'E

) Keyward prove
Medical pa*_.fments to date
Vehicle Body

Days in hospita
Income payments latest uarter-
Cutpatien wsﬂs-
Wehicle type
Reports payments latest qua er-

LLM fa ature q

Accident rnle SU%TFIF
Mumber of phone call

Injury Max AL3

) Keyword EED

Paramedical payments lafest quarter -

Injury count 1

Accident type T

Reports payments to date 1

Mumber of file note entries

Mumber of text notes type 3

Severity

Support payments latest quarter

accident quarter

Beddays 1!
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MLFP

LLM
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Relativity of Partial Dependence

Partial Dependence

LLM Feature 1
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Model Comparison

Uplift from Text data

Q
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Actual versus Modelled Ratio
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Example — Claim 1

Injury detail

Role

Total sum to date
Days in hospital
Age

Text records counts
LLM 10-NN scores

Common keywords

Q
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Outcome: Common Law Lodgement

Fractures — Limb

Passenger/Pillion

0.8
$24k c
9 é 0.6
&
19 £ 04
0-20 =
0.7 0.2 0.15
TAXI, Support, Form, General, approval 0 .

Baseline

0.61

Meta

0.71

NLP

0.84

LLM



Example — Claim 2

Outcome: Common Law Lodgement

Injury detalil Brain Injury (Mild) / Head Injury (lll defined) !
Role Bicyclist 08 0.81
' 0.71
Total sum to date $109k _ 062
Days in hospital 23 %0'6 0-55
a
Age 49 % 04
Text records counts 70+ =
LLM 10-NN scores 0.9 02
Common keywords Prove, Uploaded, Received, 0
Correspondence, Benefits, Care, Dr, Baseline Meta NLP LLM
Report, LOE, Form, Rehabilitation, Support,
Q Treating, Certificate, Services, RTW, letter,

. Practitioner, employer, Income
Actuaries pioy
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Example — Claim 3

Outcome: No Common Law Lodgement

Injury detail Fractures — Limb !
Role Bicyclist 08
Total sum to date $83k _
Q
Days in hospital 11 %0'6
a
Age 51 % 04
Text records counts 0-7 = o
LLM 10-NN scores 0.1 0.2 0.06 0.12
' 0.07
NLP Prove 0 ] . ]
: : : : [
Common keywords Police, Report, Incident, Confidential paseine veta il HM
Actuaries
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Future work

E s

Utilize more Fine-tuning the large  Use commercial private Apply to other
unstructured text data—  language model or versions of more components of lifetime
documents, e-forms,  method of aggregation  powerful models (e.g. cost of claims model
medical reports etc. of the embeddings chat GPT) instead of (e.g. cost of No-Fault

the smaller open source claims)
LLMs

Q
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Conclusions

« Unstructured text data significantly improves compensation claims predictive model
performance

« Schemes, insurers and claims service providers have a valuable asset which can be
utilized at scale with potential significant improvements in claim management and
reserving

« Large Language Models are a powerful tool for extracting signal out of unstructured
data

« LLM field is emerging and improving rapidly - expect better results in the future with
advances in technology

Q
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Join at
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