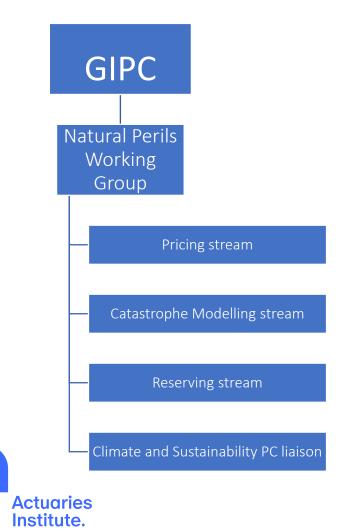

Actuaries Institute.

Natural perils pricing and reserving

GIPC Natural Perils Working Group Brett Riley, Sinead Keane, Kate Bible, Yongjie Qi

1 GIPC Natural Perils WG



Agenda

- 1. Introduction to the Natural Perils Working Group
- 2. Natural perils pricing: some considerations
- 3. Reinsurance market dynamics
- 4. Catastrophe reserving
- 5. Discussion and questions

Introduction to the Natural Perils Working Group (NPWG)

- The Catastrophe Modelling stream (led by Adrian McGarva) recently updated the technical paper on 'The Use of Catastrophe Models by Actuaries'. This will be released to members in the coming weeks
- Sam Ingram is the lead for the Climate and Sustainability Practice Committee (CSPC) liaison, and her role is to act as a contact person for the flow of information between GIPC and CSPC
 - The NPWG provided feedback to the CSPC for the recent update to the "Climate Change – Technical Paper for Appointed Actuaries"
- Other NPWG activities have involved supporting GIPC in providing feedback on natural perils related Institute submissions (e.g. submissions to Senate inquiries)

2 Natural perils pricing

Natural perils pricing considerations and reinsurance market dynamics

Natural peril pricing considerations

Today's 'tasting menu' of natural perils pricing considerations

Geographical granularity in pricing

How could we think about pricing for concentration risk?

Linking different models being used by different parts of the business

Climate change considerations for pricing actuaries

Natural peril pricing considerations

A full buffet of perils pricing considerations (not for today)

Technical perils premium pool

Actuaries

₈ Institute.

Allocating gross claims costs

- A key perils pricing decision for allocation of gross claims cost is determining the appropriate level of geographical resolution for each peril
- The decision will likely vary by peril
- Moving beyond G-NAF (address-level dataset) and towards building footprints:
 - Particular importance for Farm property and certain perils (e.g. bushfire, flood)
- Validating the level of geographical resolution in vendor models is critical
- Don't necessarily trust the vendor documentation – need to plot/visualise the modelled cost for some standardised properties

Improving linkage between business processes

- For a particular peril, vendor model 1 is the catastrophe model used by business for budgeting and capital allocation
- Vendor model 2 is already used by the class of business pricing team for address-level pricing
- New model selection is not in scope
- Conclusion of model review:
 - Vendor model 2 performs better at address-level (more granular rating)
 - However we can only get a view of loss volatility from Vendor model 1 (as model 2 is a deterministic model)
 - Should we use only the address-level pricing model in our allocation of cost to policy-level?
- How to minimise any **disconnect** between the processes, while using each model to its best strength?

	Vendor model 1	Vendor model 2
Current use	Main Australian model used by the business in the budget process (i.e. determining class of business premium pool)	Main model used by pricing team for address- level cost allocation, for both gross AAL and reinsurance costs
Model granularity	Supports disaggregation down to 1km resolution	GNAF/building footprint
Model type	Stochastic model (catastrophe model)	Deterministic model (pricing model)

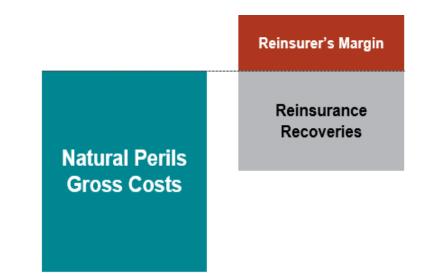
Improving linkage between business processes

Gross cost (AAL)

- Used vendor model 1 (catastrophe model) to give a view of gross claims cost (at say CRESTA level)
- Allocate this to address-level, using a blend of vendor model 2, and historical experience

Net cost of reinsurance

- Took an improved, but simple approach to allocation of the net cost of reinsurance
- Allocate using a blend of:
 - Vendor model 1 modelled volatility
 - Vendor model 1
 modelled gross AAL
 - Vendor model 2 modelled gross AAL
 - Historical experience

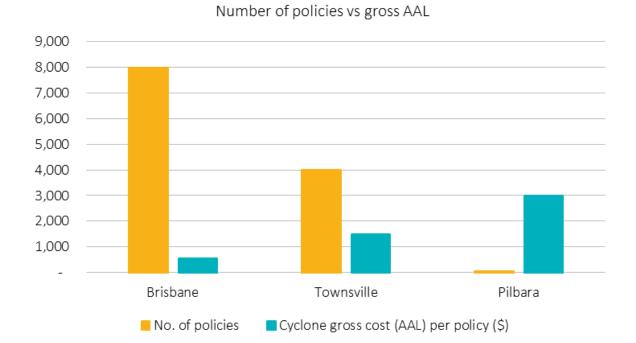

Outcome

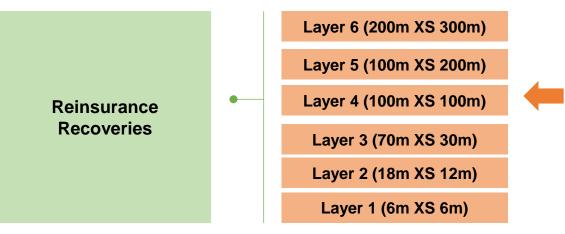
- Room for further sophistication (e.g. example on next slide)
- However making better use of available models given their relative strengths and weaknesses
- Improving the linkage between corporate/Group budgeting processes and line of business policy-level pricing

Net cost of RI: Concentration risk

- How should our allocation of the gross claims cost or AAL differ from the allocation of the net cost of reinsurance?
- The same concepts could apply to allocation of the profit margin/cost of capital
- The cost of reinsurance (and cost of capital) can vary by location
 - Property lines pricing has evolved to reflect differences in risk at the location (address) level
 - Similar thinking can be applied to the cost of reinsurance (or cost of capital) at regional level (e.g. CRESTA zone or more granular)

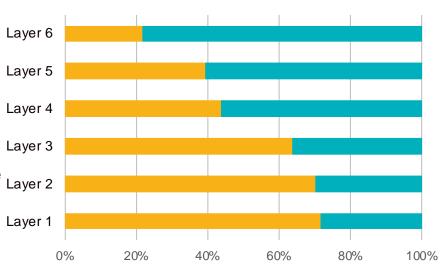
Allocating net cost of reinsurance (cyclone)


- Decent size insurer, writing only one line of property business in Australian
- Assume this is in a pre-cyclone pool world, or a class not covered by the pool (principles stand for most perils)
- A good spread of policies nationally
- Purchases a CAT reinsurance program from a panel of reinsurers giving it adequate coverage up to a 1 in 500 (say) PML loss
- For simplicity we shall ignore aggregate reinsurance, quota share, per risk XOL etc. for now
- We allocate the net cost of reinsurance in two ways as a comparison:
 - **1. Allocation by reinsurance margin**
 - 2. Allocation by gross perils AAL



Allocating net cost of reinsurance (cyclone)

- Gross cyclone AALs and policy counts for 3 CRESTA regions shown on the right
- Pilbara has higher gross modelled cyclone AAL than Townsville, on a per policy basis
- However the concentration risk lies in Townsville (i.e. highest RI layers are purchased to cover Townsville)

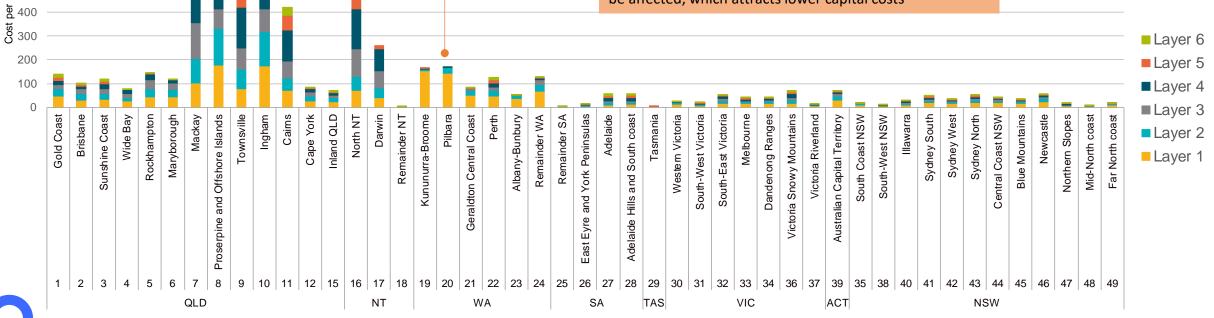


Allocating net cost of reinsurance (cyclone)

- We can use a catastrophe modelling Event Loss Table to help us calculate the expected amount of reinsurance recoveries to help us assess the **reinsurers' expected loss ratio** (and thus their margin) in each CAT reinsurance layer by region.
- Higher reinsurance layers are expected to have lower loss ratios to support Lay the capital required.
- The goal is to allocate the margin (by layer) to the ICA zones individually. We Layer 2 expect that Layer 5 and 6 should be allocated to areas of high concentration perils risk, such as Townsville.

Event ID	Event	ICA Zone	Gross Loss	Frequency
123	Cyclone	Townsville	\$150m	0.000004
123	Cyclone	Ingham	\$10m	0.000004
123	Cyclone	Cairns	\$30m	0.000004
123	Cyclone	Mackay	\$20m	0.000004
123	Cyclone	Inland QLD	\$5m	0.000004
234	Cyclone	Marlborough	\$10m	0.00005
234	Cyclone	Ingham	\$15m	0.00005
234	Cyclone	Sunshine Coast	\$2m	0.00005
234	Cyclone	Brisbane	\$3m	0.00005

Reinsurance Margin


Reinsurer AAL / Lim
Margin / Limit

Net cost of RI by region (using margin)

Townsville is an area of high concentration, so its exposure can impact all layers, noting higher layers have higher capital costs

Because of this, each additional policy in Townsville requires more marginal capital (and cost) than an additional one in Pilbara

Although Pilbara is a very high cyclone risk area, it is an area of low concentration, so only low layers are likely to be affected, which attracts lower capital costs

Actuaries Institute.

900 800 700

Policy (\$) 009 (\$)

AAL vs Margin approach

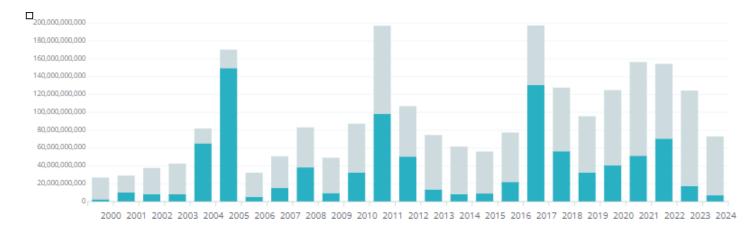
1,200	c	doe	-	t ad									the N tratio				f RI	as it												C A	con Aus	cen tral	trat ia is	ion tha	s in	Tow ie a	/ns\ lloc	ville atio	ano n o	d lo of th	wei e ca	r on apit	es i al c	in o ost	urer with high other parts of can be very	
Cost per Policy (\$) 008 008 (\$) 009 009 009 009										 			 			_ _	_ [•		high	gion: h cy eivir ers	clor	ne ri	isk,	sho	bluc	l nc	ot be	5								I gir		Seu			Jus			20	
200 0															(-					Allocation b	by Margin
	Gold Coast	Brisbane	Sunshine Coast	Wide Bay	Rockhampton	Maryborough	Proserbine and Offshore Islands		Ingham	Cairns	Cape York	Inland QLD	North NT	Darwin	Remainder NT	Kununurra-Broome	Pilbara	Geraldton Central Coast Perth	Albany-Bunbury	Remainder WA	Remainder SA	East Eyre and York Peninsulas	Adelaide	Adelaide Hills and South coast	Tasmania		South-West Victoria	South-East Victoria	Welbourne	Snow	VICTORIA SNOWY INOUNTAINS		Australian Capital Territory South Coast NSW	South-West NSW	Illawarra	Sydney South	Sydney West	Sydney North	Central Coast NSW	Blue Mountains	Newcastle	Northern Slopes	North	Far North coast	Allocation b	by AAL
	1	2	3	4	5	6 7 QL	8	9	10	11	12	15	· ·	17	18	19 :		21 22 WA		5 24	25	26 S/			29 3 AS	30 3	31	32 3 VI		34 3	63	7 3 AC		5 38	3 40	41	42	43 NS		45	46	47	48	49		

Climate change considerations for pricing actuaries

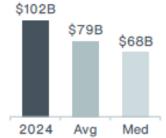
A typical argument

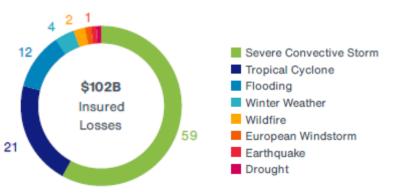
- "Insurance contracts are generally 12 month, so react accordingly to any trends in underlying perils costs"
- "Already used to reinsurance costs and structures changing on an annual basis, and pricing is adjusted accordingly "

The argument may no longer hold


- Australian mandatory climate financial disclosures (Australian Sustainability Reporting Standards)
- Applicable to first group of reporting entities from 1st January 2025 – audit assurance to be phased in over time
- Insurers will need to perform scenario analysis to understand the financial effects of climate change
- Over the medium-term and long-term as well as short-term
- Pricing actuaries could see this as an opportunity to engage in strategy and risk management discussions

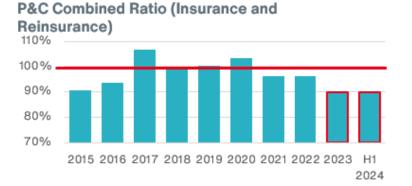
Global Insured NatCat Losses


Secondary perils have been responsible for ~60% of all losses since 2017


- * Aon has tracked ~\$73bn of global insured NatCat losses so far in 2024.
- * Around half of the total was derived from severe convective storm activity in the U.S.
- * The year has also featured significant flood events in Germany, Brazil, Canada, the United Arab Emirates and China.
- * Primary peril losses remain low, but we are only midway through what is predicted to be a very active Atlantic hurricane season.

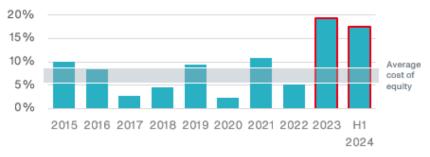
Secondary Perils

Q1-Q3 Global Insured Losses



Primary Perils Primary Perils: Earthquake, European Windstorm, Tropical Cyclone. Secondary Perils: Drought, Flooding, Severe Convective Storm, Wildlire, Winter Weather, Other.

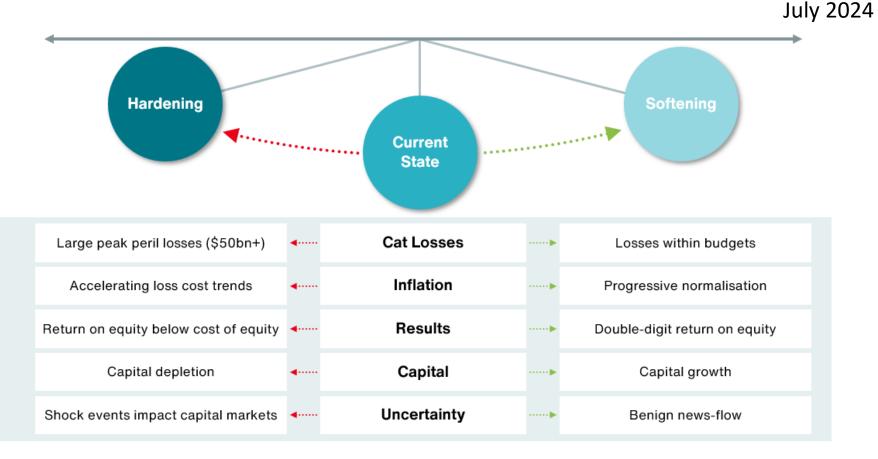
Source: Aon's Catastrophe Insight Database, as of August 20, 2024 (subject to change).


Global Reinsurers: 18 Months of Strong Performance

Average RoE doubling Cost of Equity, despite 74bn Insured Nat Cat Losses

Global Reinsurer Capital (\$bn) 675 670 69 650 625 595 605 585 565 575 556 579 493 514 2015 2016 2017 2018 2019 2020 2021 2022 2023 H1 Alternative capital 2024 Traditional capital

Average Return on Equity

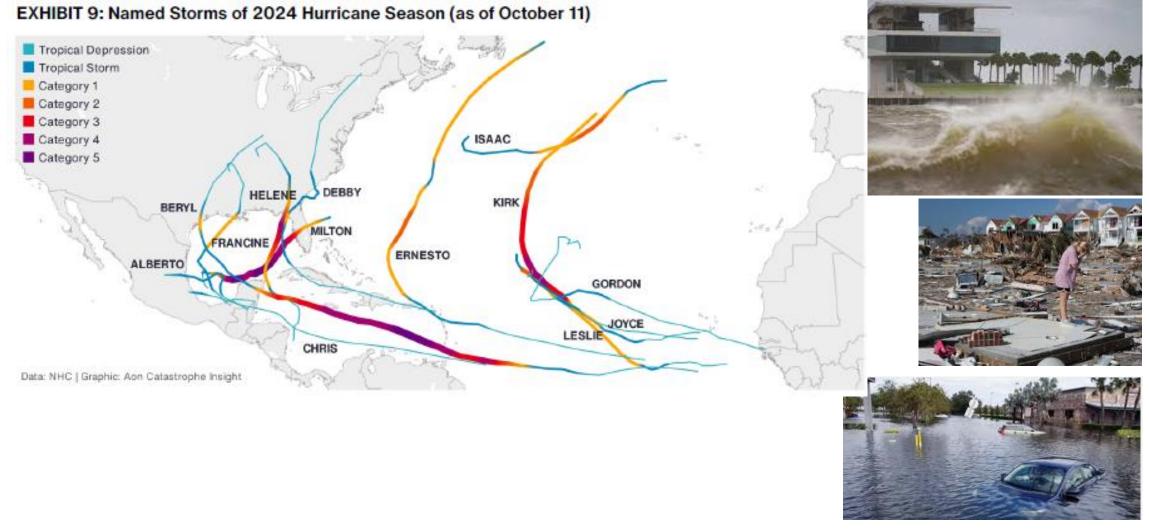


Notes: Results based on Aon's Reinsurance Aggregate for 2006-2022 and Aon-calculated averages for 2023 and H1 2024

Primary Perils: Earthquake, European Windstorm, Tropical Cyclone. Secondary Perils: Drought, Flooding, Severe Convective Storm, Wildfire, Winter Weather, Other. Source: Company financial statements, Aon's Catastrophe Insight Database, as of August 20, 2024 (subject to change).

2025 Renewal Scenarios

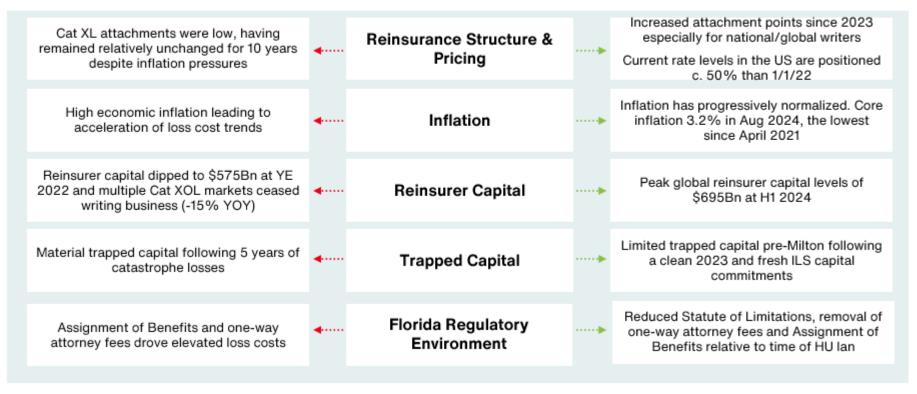
Cat losses and capital inflows to drive outcomes


Actuaries Institute.

Source: Aon Business Intelligence.

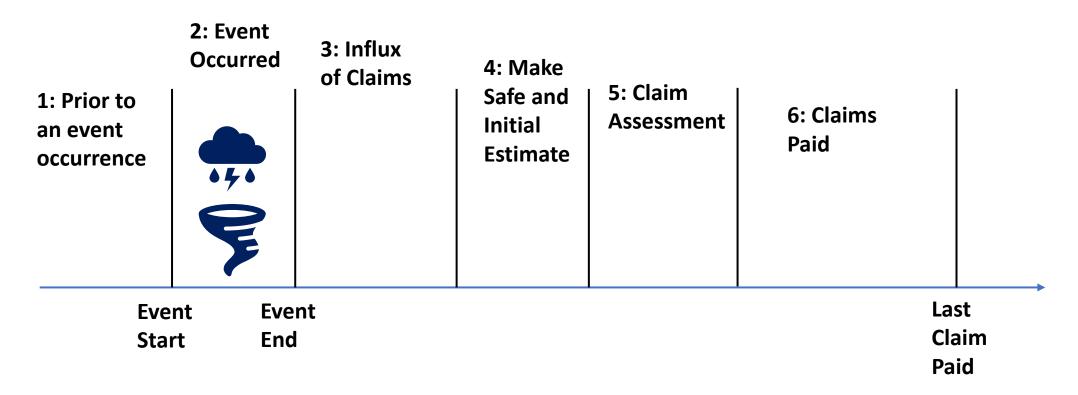
Actuaries Institute.

Source: Aon Business Intelligence.

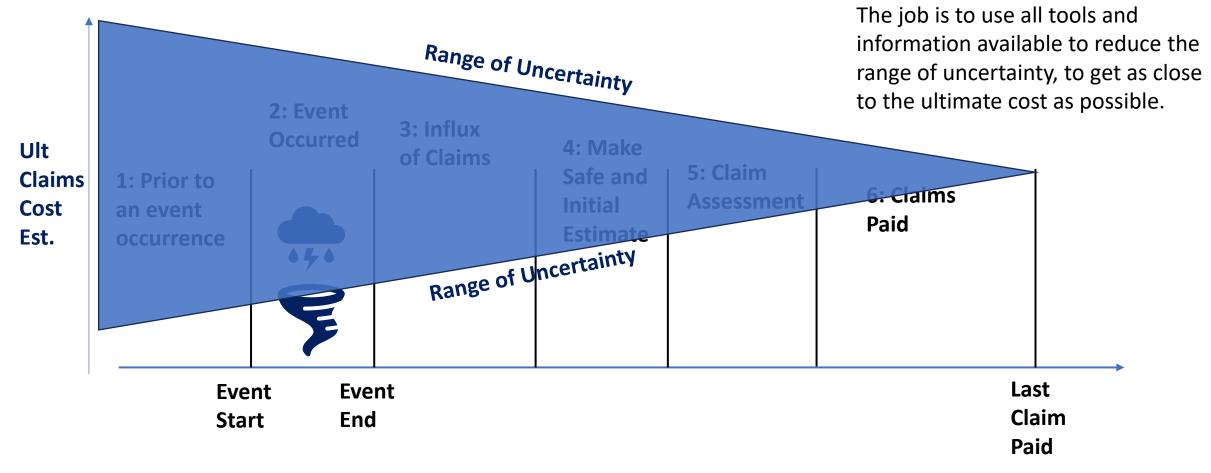


January Renewal Market Environment

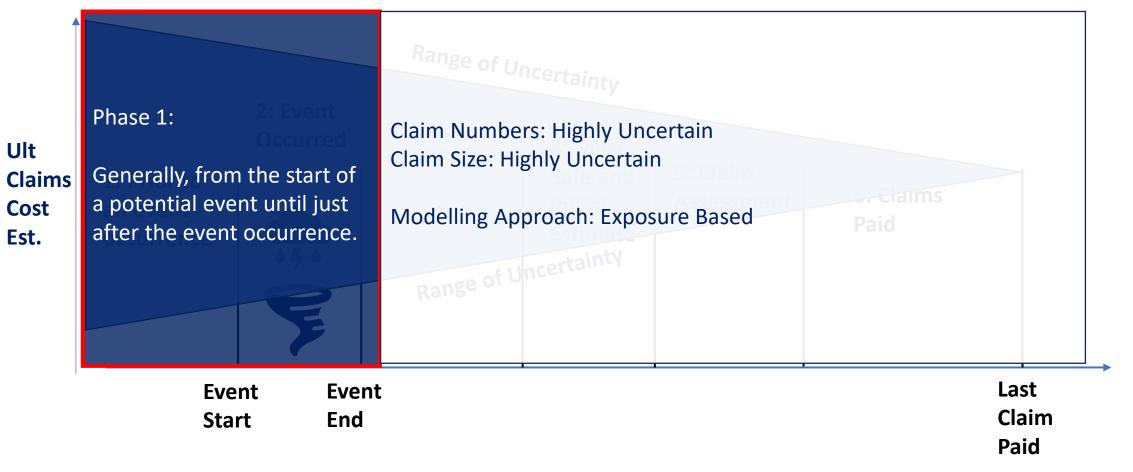
Reinsurance market healthier and more stable than post lan


Q4 2022 (Post lan)

Current Environment



3 Tips on reserving for catastrophes



		Range of Uncertainty	
Ult Claims Cost Est.	2: Event Occurred 1: Prior to an event occurrence	Phase 2: From the end Phase 1 till approx. 1 - 2 months after the event Range of Uncertainty	Claim Numbers: Reasonably Developed Claim Size: Highly Uncertain Modelling Approach: Transition from exposure-based models to claim-based models.
ļ	Event Eve Start End		Last Claim Paid

• Every catastrophe event has its own idiosyncrasy, use your historical data to the limit of its insight but no further.

• Claims don't happen on spreadsheets, look outside of the window, talk to claims experts.

Fact sheet

General insurance complaints about flood claim decisions

This fact sheet outlines what information financial firms and complainants should provide to AFCA in complaints about flood claim decisions, particularly when a site-specific hydrology report is not available.

Considerations

- Examples of things to look out for:
 - Claims management practice changes
 - Building code changes
 - New AFCA rulings that set new precedents
 - Demand surge, construction industry capacity in affect area, remoteness of the location
 - New market dynamics, for example "storm chasers"
 - Potential reporting delays that can be materially different from the past
 - And so on....
- Other Complexities:
 - Reinsurance (e.g. Peril Coverages, Hours Clause, Multi event cost allocation, Cyclone pool etc.)
 - Seasonality in premium liability estimates
 - Policy exclusions
 - Etc.

Thank you

Actuaries Institute actuaries.asn.au