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Abstract 
Price optimisation in insurance seeks to modify premiums away from risk cost in ways 
that maximise business objectives, such as increasing profit while achieving a target 
volume.  Knowledge of customers’ price sensitivities can lead to sophisticated 
approaches to optimise premiums.  

While the practice naturally attracts controversy, it is generally accepted as effective.  
However, significant uncertainties and complexities arise on more careful analysis. 
Issues with model inaccuracy and complexities with multi-year impacts mean that 
establishing superior performance is less clear.  

This paper builds on existing research by exploring the situations where optimisation 
approaches can potentially struggle: 

▪ How do strategies play out over multiple years, and what is the impact on a 
portfolio’s price sensitivity over time? 

▪ How do nonlinearities in modelled demand curves, such as those induced by link 
functions, affect optimisation? 

▪ What are the practical impacts of model uncertainty on performance? 
▪ How do strategies fare in situations where customer price sensitivity can vary year 

to year? 
▪ How important is random price testing to maintaining accurate demand models? 

The paper looks at theoretical and simulated results, with an emphasis on 
understanding the robustness of standard optimisation approaches under plausible 
uncertainty assumptions on a multi-year basis.  

1 Introduction 

Price optimisation in insurance refers to pricing changes to achieve a business objective (such as profit 
or volume) that goes beyond standard risk pricing. If two cohorts with differing price sensitivity are 
identified, then a business will usually be better off (in the short term, at least) increasing prices slightly 
for the price insensitive group and decreasing for the other group.  

Insurance, particularly personal line general insurance, offers unique possibilities for price optimisation 
given the ability to tailor premiums (individualised or small-cohort pricing), and the large amount of 
information collected on those individuals. Effective optimisation depends on detailed modelling of 
individuals’ propensity to buy insurance against other variables, so is of interest to actuaries who have 
the technical skills and subject area expertise.  

Despite the above, there is relatively little public research on optimisation, for two key reasons: 

▪ Commercial sensitivities – Companies that employ price optimisation see it as an area of high 
commercial confidence, and in many cases a competitive advantage.  

▪ Ethical concerns – Since optimisation involves increasing prices for some customers for reasons 
other than risk, there is moral ambiguity around its appropriateness.   

Ethical concerns have led to regulation in some jurisdictions. For instance, many US states prohibit the 
use of factors for pricing outside of those used in risk rating, or optimisation that is unfairly 
discriminatory (see for instance the CAS Price Optimisation White Paper). Similarly the UK Financial 
Conduct Authority introduced regulations from 2022 to ban price walking – a form of optimisation 
trading off profit between new business and renewal customers (Financial Conduct Authority 2021). In 
Australia, the practice is not regulated, although it is sometimes raised as an industry concern either 
directly or indirectly1.  

 
1 Complaints about insurer ‘loyalty taxes’ such as those raised by the NSW Insurance Monitor in 2018, will 
intersect with concerns on price optimisation. 
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There is an implicit assumption in the discussion above that price optimisation is effective; otherwise 
companies would not invest heavily in implementing optimisation. However, effectiveness has not been 
heavily studied, and this is the motivation for our paper. It turns out that: 

▪ It is easy to optimise on variables that lead to perverse, or at least unhelpful, portfolio outcomes 
(section 3.1) 

▪ Retention as well as elasticity has a role to play in optimising premiums, and that the adopted link 
function as a significant impact on resulting premiums (section 3.2) 

▪ Overconfidence in the ability to estimate elasticity leads to degradation in optimisation performance 
in a way that is not always obvious (section 3.3) 

▪ Assumptions around model structure have profound impacts on results, when no ‘true’ model 
structure is known in advance (section 3.4) 

▪ Optimisation leads to a more elastic customer base over time, which can carry longer-term 
implications (section 3.5) 

▪ The ability to estimate customer elasticity (a core element of optimisation) relies on a good 
experimentation setup and testing volumes – which carries a significant cost (sections 3.6 and 3.7). 

These results call into question the overall viability of optimisation, or at least creates a need to carefully 
understand the risks on an insurer’s customer base, and the inherent limitations of the process. 

In some places our work builds on that of Semenovich & Petterson (2019), which showed theoretical 
underperformance of optimisation in simplified circumstances when there is uncertainty in elasticity 
estimation. Our work embeds this in a full customer model, as well as other aspects of model risk. 

2 Simulated data setup 

2.1 Baseline setup 

Most of our research questions are challenging to answer with analytic results; simulated data becomes 
easier and more practical. Our aim is to set out a plausible base case with dynamics that might reflect a 
typical insurer context, but with a focus on elasticity considerations. This involves some significant 
simplifications elsewhere, including: 

▪ A basic relationship between profit margins and premium. 

▪ An optimisation at a fixed point in time (so all policies renew at the same time), which simplifies the 
practical issues around optimising in real time. 

▪ A focus on renewal business only, rather than incorporating new business strategy. 

▪ Ignoring multiline effects, where the value of customers holding multiple products is accounted for. 

▪ No explicit modelling of competitor premium effects. 

▪ Considering retention function structures that yield a smooth relationship between premium and 
retention. We do not consider retention functions that include steps or discontinuities. 

While these are likely important and would in practice need to be modelled, they have a smaller impact 
on the types of issues explored in this paper. 

Our baseline setup has the form set out below. We deliberately mimic a generalised linear model 
structure, using a logit link function, so that the inverse link is 𝑔(𝑥) =

1

1+𝑒−𝑥: 

▪ 𝑛 = 100,000 customers, indexed by 𝑖 

▪ Latent variables 𝑥𝑖1~𝑁(0, 0.2), 𝑥𝑖2~𝑁(0, 0.3), 𝑥𝑖3~𝑁(0, 0.3), 𝑥𝑖4~𝑁(0, 0.5) for generating differences 
between individuals and related parameters 𝜙1 = 0.1, 𝜙2 = −0.3 
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▪ Risk cost (including other expenses) 𝑅𝑖  sampled from a gamma distribution with shape 𝛼 = (
𝜇𝑟𝑖

𝜎𝑟𝑖
)

2
 

and rate 𝛽 =
𝜇𝑟𝑖

𝜎𝑟𝑖
2, for an individual with mean 𝜇𝑟𝑖  and standard deviation 𝜎𝑟𝑖, defined with constant 

coefficient of variation 𝜎𝑟𝑖

𝜇𝑟𝑖
= 0.4. The mean for an individual is set to 𝐸(𝑅𝑖) = exp(𝑙𝑛(800) + 𝑥𝑖1 +

𝑥𝑖2). 

▪ An average retention rate of 𝜇𝑑 = 80%, with retention 𝑑(𝑥𝑖) = 𝑔(𝑔−1(𝜇𝑑) + 𝜙1𝑥𝑖1 + 𝑥𝑖3) = 𝑔(𝑧𝑖) 

▪ A standard profit margin of 15%, so that base premium equals 𝑃𝑖 = 𝑅𝑖/0.85, and base profit is 𝜋𝑖 =
𝑃𝑖 − 𝑅𝑖.  

▪ 𝑟𝑖 = 𝑅𝑖𝑑(𝑥𝑖) = 𝑅𝑖𝑑𝑖 is the expected risk cost allowing for retention. 

▪ True elasticity parameter 𝑒𝑖 = −(3 + 2(𝜙2𝑥𝑖1 + 𝑥𝑖4)), subject to a maximum of −0.5. This is defined 
so that the demand function with respect to a percentage price change 𝑝𝑖  is 𝑑(𝑥𝑖 , 𝑝𝑖) = 𝑔(𝑧𝑖 + 𝑒𝑖𝑝𝑖). 

▪ Maximum price changes of ±20% in a given year. 

Under this setup and notation profit can be expressed as 𝜋𝑖 = (𝑃𝑖(1 + 𝑝𝑖) − 𝑅𝑖)𝑔(𝑧𝑖 + 𝑒𝑖𝑝𝑖). 

2.2 Flexibility and variation in setup 

The inclusion of the latent variables 𝜙1and 𝜙2 allows for some relationships to be set across the 
simulation. We include a slight positive correlation between the risk model and base retention 
probability (𝜙1 = 0.1), and between the risk model and elasticity parameters (𝜙2 = −0.3). 

The setup also gives flexibility to test alternative relationships, and add uncertainty to estimates of 
elasticity, as we do later in the paper. 

2.3 Defining the relationship between price change and demand (elasticity) 

The common definition of price elasticity of demand is based on the percentage change in demand 
associated with a given percentage change in price. Under this definition, for some elasticity parameter 
𝜀𝑖, demand can be expressed as 𝑑(𝑥𝑖 , 𝑝𝑖) = 𝑑(𝑥𝑖,  0)𝑝𝑖

𝜀𝑖 (Talluri and Van Ryzin 2005). 

The key awkwardness of this formulation is that individual-level retention probabilities are bound 
between zero and one, whereas the common formulation is unbounded. Applying a link function, such 
as the logit, to ensure retention lies in this allowable range is a natural solution, but it changes the 
relationship between elasticity and demand by imposing diminishing returns as the probability 
approaches one. This motivates our setup in section 2.2. The elasticity parameter is setup there as linear 
(prior to logit transformation) – this matches conventional approaches to modelling elasticity within the 
GLM framework. A comparison of demand as functions of these alternative formulations is illustrated 
below. 

The elasticity parameter 𝑒𝑖  defined in section 2.2 is therefore conceptually different from the standard 
definition of price elasticity of demand. The analyses in this paper relate to this elasticity parameter, 
rather than the price elasticity of demand 𝜀𝑖. We note that under a constant elasticity parameter 𝑒𝑖, the 
implied price elasticity of demand 𝜀𝑖  will change at a policy’s premium changes. 
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Figure 1 – Relationship between retention and price change under different approaches for capturing 
price elasticity.  

 

2.4 Optimisation 

Our main optimisation routine is designed to target a specific volume of written risk cost 𝐶𝑅 (under 
expected retention rates), and maximise profits at that volume. Using the parameterisation from Section 
2.1, this yields: 

maximise ∑(𝑃𝑖(1 + 𝑝𝑖) − 𝑅𝑖)𝑑(𝑥𝑖 , 𝑝𝑖)

𝑛

𝑖=1

 

subject to ∑ 𝑅𝑖𝑑(𝑥𝑖 , 𝑝𝑖)

𝑛

𝑖=1

= 𝐶𝑅 

As shown in Semenovich & Petterson (2019), an optimality condition under this specification is that all 
customers must be priced either at their upper or lower bound, or must have identical 𝜕𝜋𝑖

𝜕𝑟𝑖
. This is 

intuitive, as if two customers have different 𝜕𝜋𝑖

𝜕𝑟𝑖
, then profit could be improved without changing written 

risk cost by moving price up for one policy, and down for the other. 

Our main optimisation routine was designed based on this idea. Implementation was a combination of 
two phases: 

1. Newton steps to identify a single fixed price that that achieves the overall target volume 

2. Optimisation steps based on calculated derivatives of profit against demand (risk-cost weighted), 
𝜕𝜋𝑖

𝜕𝑟𝑖
 . Observations with larger values see premium decreases and low values increases, until all 

observations are at price change limits or have an equal derivative.  

Performance of the optimiser is relatively good – 100,000 observations in about three seconds. 

2.5 Basic results 

The distributions of base premiums and retention (before price changes) as well as the elasticity 
parameter are shown in Figure 2. 
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Figure 2 – Histograms of base premiums, retention rates and elasticity parameters 

 
The dataset is structured in a way that overall elasticity is relatively low; increasing all premiums will 
increase (one-year) profits. The black curve in the figure below shows profit against risk cost volume 
under uniform price changes; if prices are increased one moves leftwards along the curve towards lower 
premium and more profit.  

Gains from price optimisation are moderate. Targeting a risk volume of $68m, profit of $11.96m under a 
uniform price change rises to $14.25m under optimisation, a 19% lift in profit, equalling about 3% of risk 
cost. At the extremes of the curves all price changes are at the minimum/maximum and so standard and 
optimised results are the same. 

Table 1 – Basic optimisation results 

 

Customer 
volumes 

Avg 
premium 

GWP 
($m) 

Risk 
premium 

($m) 
Profit 
($m) 

All price change 0% 79,578 1,004.49 79.98 67.98 12.00 

Uniform price change 79,600 1,004.04 79.96 68.00 11.96 

Optimised prices 79,712 1,036.20 82.25 68.00 14.25 
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Figure 3 – Standard and optimised curves trading off risk volumes and profit 

 

Price changes will correlate with other customer dimensions.  Resulting price changes for an 
optimisation targeting $68m risk cost are shown below. Figure 4 shows the overall distribution of price 
changes – around 20% of policies are at the pricing extremes, with the remainder distributed within. In 
Figure 4 far more policies are assigned the maximum price change of +20% than at the minimum of -
20%. This is a function of the selected target risk premium. Selecting a lower target risk premium would 
result in a significantly larger proportion of policies at the lower bound. 

Elasticity is an important driver of optimised premium changes, but not the only one. Figure 5 shows that 
those with higher (less negative) elasticity parameters tend to have higher premium increases. Figure 6 
shows that those with higher initial retention rates are also assigned higher price changes. Finally, Figure 
7 shows that there is not a pattern by base premium; this is deliberate in our setup to focus on risk cost 
rather than absolute customer numbers. 

Figure 4 – Distribution of price changes, basic optimisation 
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Figure 5 – Price change by elasticity parameter

 

Figure 6 – Price change by initial retention rate 

 

Figure 7 – Price change by initial premium 
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2.6 Role of optimisation versus headline strategy 

One important aside, before deeply optimisation-specific results, is the relative size of optimisation-
based improvements compared to headline pricing. The potential gains are material in our example, but 
modest compared to the impact of aggregate changes.  

This is shown in the curves Figure 3 (which indexes price changes from -20% through to 20%), where the 
‘gap’ between standard and optimised curves is only a small fraction of the overall movement of the 
curve. To use the example of Table 1, a similar increase in profit to perfect optimisation can be achieved 
with a uniform 3% increase in prices (with a corresponding 2% reduction in expected risk premium 
written). 

While we do not claim that the simulated setup is truly representative of the market, it does suggest two 
implications: 

▪ Reasonable time should be invested into headline pricing decisions and strategic positioning – not 
just optimisation. 

▪ When considering the potential risks and inaccuracies of optimisation work (as we do in this paper) 
the comparison to simple price changes can be instructive. This includes situations where 
optimised profits are up, but no more than if a simpler price increase had been put through.  

3 Results 

3.1 What is the right thing to optimise? 

Given full knowledge of the system, it is possible to vary prices to improve profit, but there remain 
choices as to how we define a good optimisation. Our selection above is on risk premium volume, but 
the choice is not automatic. A pure profit maximisation exercise (that is, set all premiums to maximise 
profit), under our setup, will move all prices to the maximum, since we have price elasticity that are 
smaller than demand. However, this approach is short-term and better aligns with global strategy rather 
than the more complex optimisations we are seeking.  

A plausible alternative is maximising profit with respect to a level of customer retention numbers. 
Customer volumes is a standard (and objective) metric, so seems natural. However, it produces 
perverse impacts on written premium. Price reductions are concentrated on people with low base 
premiums (as they are ‘cheaper’ to buy numbers) and increases focused on large premiums (as 
increases generate larger absolute profit gains). 

Figure 8 shows average price changes by base premium if we change our scenario to optimise for base 
premium rather than written risk cost. The results are very different, with premium increases 
concentrated in large policies, rather than the even spread of Figure 7. This can be viewed as a strategy 
that seeks to lose significant risk premium volumes subject to a customer numbers constraint. 

Compared to an optimisation on risk volumes that delivers similar customer numbers, optimising on 
customer numbers results in 3% lower risk premium and 14% higher profit. 
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Figure 8 –Price changes by starting premium obtained when optimising for customer numbers rather 
than risk premium volumes 

 

While such a strategy is legitimate if customer numbers is genuinely a key metric, forcing away larger 
premiums will ultimately shrink an insurer’s written premium relatively quickly. For this reason we view 
risk premium volume as the correct way to view the portfolio since it provides an internally consistent 
focus on profit margins. Customers with similar profit margins but different premiums are treated 
similarly. 

An additional option is to optimise for profit with respect to a target gross written premium. This should 
work reasonably similarly to risk premium, except that since gross written premium varies directly with 
price (whereas risk premium does not), it adds some extra dynamics that require control. To take an 
extreme example, if all policies had reverse elasticity (demand increases with price increase), an 
optimisation on gross written premium would fail to take advantage.  

3.2 Role of elasticity and retention in determining optimised price changes 

The figures in Section 2.5 illustrated the twin role of elasticity and retention rate in determining price 
changes. We can examine this by considering the derivative of profit against written risk cost 𝜕𝜋/𝜕𝑟 (𝑖 
dropped for convenience). This is the key determinant of whether a customer’s premium will be 
increased or decreased by optimisation. 

𝜕𝜋

𝜕𝑟
=  

𝜕𝜋
𝜕𝑝
𝜕𝑟
𝜕𝑝

=
𝑃(1 + 𝑝) − 𝑅

𝑅
+

𝑃

𝑒𝑅(1 − 𝑑(𝑥))
 

The second term in this expression includes both (negative) elasticity parameter 𝑒 and retention rate 
𝑑(𝑥). All else equal: 

▪ Customers with more negative values of 𝑒 (more elastic) will have a less  negative 𝜕𝜋/𝜕𝑟 (meaning 
less profit is sacrificed to achieve a unit increase in demand) and are therefore more likely to see 
premium decreases under optimisation. 

▪ Customers with higher initial retention 𝑑(𝑥) will have more negative values of 𝜕𝜋/𝜕𝑟, and be more 
likely to see premium increases. That is, they appear to be less elastic. 

This influence of retention on apparent elasticity occurs partly due to the dampening effect of the 
inverse logit link function. 

Figure 9 illustrates this retention effect by considering how each of the derivatives in the expression 
above changes based on a customer’s initial retention. We see that written risk changes most quickly 
with premium at both high and low initial retention due to the inverse logit link. Profit increases more 
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quickly with premium when initial retention is high. Combined, this means that 𝜕𝜋/𝜕𝑟 decreases rapidly 
as initial retention increases. The hyperbolic shape of the relationship between  𝜕𝜋/𝜕𝑟 means that 
customers with high modelled base retention are likely to be assigned substantial premium increases in 
optimisation. 

The relationships shown in Figure 9 (and therefore optimised premiums) are strongly influenced by the 
adopted link function in the demand model. In practice, an inverse logit link is usually selected with little 
consideration, however, it should be noted that this makes an implicit assumption that customers with 
retention nearer to 50% are more elastic than those at the extremes. Section 3.4 explores this further. 

While outside the scope of this paper, we also note that risk cost also appears in the expression for 
𝜕𝜋/𝜕𝑟. This means that errors in risk cost estimation will also deteriorate optimisation performance, 
particularly for customers where 𝑑(𝑥) is low, such that the first term in the expression above carries 
greater weight. 

Figure 9 – Key derivatives for optimisation as base demand varies(a) 

 
(a) Show for an example customer with 𝑒𝑖  = -3, the average value in our simulated data setup. 

Figure 10 approximates the proportion of the variation in 𝜕𝜋/𝜕𝑟 that comes from variation in initial 
retention as opposed to variation in the elasticity parameter, under our standard setup with logit link 
structure. While not a perfect measure, this can be thought of as a proxy for the relative influence of 
variation in elasticity parameter and initial retention on optimisation gains. 

We do this under simplified version of our baseline setup, where customers’ elasticity parameter 𝑒𝑖  and 
initial retention parameter 𝑧𝑖 are independent. We simulate datasets with a range of different standard 
deviations of both 𝑒𝑖  and 𝑧𝑖, and for each calculate the standard deviation of 𝜕𝜋/𝜕𝑟 at base premiums. 
We approximate the proportion of variation in 𝜕𝜋/𝜕𝑟 that is due to initial retention 𝑧𝑖 by comparing the 
change in standard deviation of 𝜕𝜋/𝜕𝑟 if the variation in 𝑒𝑖  was set to 0, versus if the variation in 𝑧𝑖 was 
set to zero. 

The baseline data described in simulated has a standard deviation of 𝑒𝑖  of approximately 1, and 
standard deviation of 𝑧𝑖 of approximately 0.3. As such, we might expect around 28% of optimisation 
gains to be related to variation in initial retention rather than the elasticity parameter. We see that as 
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variation in the elasticity parameter decreases, we quickly reach a point where over half of optimisation 
gains are due to variation in initial retention.  

Figure 10 – Approximate proportion of variation in 𝜕𝜋/𝜕𝑟 due to variation in initial retention, for data with 
average initial retention of 80%. 

 
While not the focus of this paper, we tested a similar analysis on a simulated data designed to look more 
like a new business portfolio. That is, with low “retention” rate, and higher elasticity. In this case the role 
of initial retention variation was substantially lower than shown in Figure 10 for our baseline setup. 

3.3 Revisiting the costs of elasticity misestimation 

Semenovich & Petterson (2019) show a ‘fool’s gold’ effect in optimisation contexts, showing that 
misestimation in both the estimation of elasticity and the measurement of optimisation’s effect can lead 
to significant gaps between expected and true optimisation performance. Under simplified assumptions 
(most notably a linear setup and very small price adjustments only) a key result is that the profit 
improvement can be expressed as a decay due to error, which we label 𝑇: 

𝑇 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑝𝑟𝑜𝑓𝑖𝑡 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑓𝑖𝑡 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡
=  

𝜎𝑏

√𝜎𝑎
2 + 𝜎𝑏

2
 

Where 𝜎𝑏 is the spread of the derivative of profit with respect to demand (𝜕𝜋/𝜕𝑑) and 𝜎𝑎is the spread of 
error in the estimation of this quantity. This quantity reflects the correlation between the original and 
noisy estimate of the derivative. 

Under simulation, we can use a similar approach to add noise to simulated elasticity parameter 𝑒, to 
reflect a less than perfect parameter estimate. We do this by holding the overall spread of the elasticity 
parameter constant but increasing the relative component of additional noise to achieve a desired 
correlation 𝑇. We refer to this value as accuracy throughout this section.  

We can then see how optimisation performance decays when optimising on the noisy parameter but 
measuring performance on the true parameter. Examples of different levels of noise are shown in Figure 
11. 

0 0.1 0.2 0.3 0.4 0.5 0.6
0.0 100% 100% 100% 100% 100% 100%
0.2 0% 54% 71% 79% 84% 88% 90%
0.4 0% 36% 53% 64% 71% 77% 81%
0.6 0% 25% 40% 51% 59% 66% 72%
0.8 0% 16% 28% 38% 46% 53% 60%
1.0 0% 11% 20% 28% 35% 42% 49%
1.2 0% 8% 15% 21% 28% 34% 40%
1.4 0% 6% 12% 18% 23% 29% 35%

1.6 0% 5% 11% 16% 21% 26% 31%

Standard deviation 
of elasticity e i

Standard deviation of initial retention parameter z i
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Figure 11 – True and noisy elasticity parameters under different levels of accuracy 𝑇 

 
Under our standard setup and accuracy of 0.5, we can measure performance and construct the 
optimisation frontier, shown in Figure 12. Perhaps surprisingly, the frontier, rather than being midway 
between the standard and optimal curves, sits closer to the standard, implying less gain under 
optimisation. Despite this, if evaluating optimisation performance using the noisy elasticity parameter 
estimate, expected gains are similar to the true optimal curve. 

Importantly, we note that most of the deterioration is seen in risk volumes rather than profit. Since 
optimisation puts through an overall increase in premiums, this still increases profits (as per the 
standard price change curve), but risk volumes come in below expected. For example, at the target of 
$68m risk volume, the profit increase is still 17% (compared to 19% for the true curve), but actual 
volumes are $67m. 

Figure 12 – Standard, optimal and optimal subject to error (T=0.5) frontiers 

 

We can characterise this performance as a percentage of the distance between the two curves (along a 
vertical line); at that level of actual risk volume, what fraction of the way between standard frontier and 
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optimal is achieved. For 𝑇 = 0.5, the result is about 40%. As we vary the accuracy, this performance 
appear to move linearly, but with a slope greater than one, as shown in Figure 13 below. We note that the 
definition of 𝑇 is based on error in the estimate of the elasticity parameter, which differs from the 
definition in Semenovich & Petterson (2019). 

Figure 13 – Performance of optimisation under noise – 0% is standard curve and 100% is optimal curve 

 

The figure shows that in this setup, accuracy below 0.2 actually sees worse performance than 
undertaking no optimisation at all. We believe this is a new result – that optimisation can be damaging 
if there is a poor hold on elasticity.  

The negative performance is largely a function of the nonlinear function 𝑔(𝑥) that links price change to 
retention. When retention is above 50% the function is concave. This means that, given two identical 
policies, randomly moving one up and the other down will lower average retention rate (under Jensen’s 
inequality). The degree of impact can vary with the position on the curve and size of price movement. But 
as an example, if two policies start at 80% retention and price changes move by 0.3 on the linear 
predictor (so adjusted retention is 84.3% and 74.8%), then the average retention drops to 79.5%. 

Importantly, the slope of the performance decay varies depending on the setup. If elasticity is large and 
variable relative to retention, the decay with inaccuracy will be large. Figure 14 shows a much stronger 
decay when the elasticity parameter is doubled and retention variability halved. Indeed in this case the 
accuracy must be above 0.5 before any benefit is seen. 

Conversely, in situations where the elasticity variation is small, and retention variability large, the slope 
of decay softens. Figure 15 shows the result with the elasticity parameter halved and doubled retention 
variation – in this case the optimisation carries benefits even when the elasticity model is entirely noise 
(0% accuracy). Here the model is effectively ‘optimising on retention’, which can still deliver some value; 
50% of the optimisation gains are still retained. 
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Figure 14 – Performance of optimisation under noise – double the variation in elasticity parameter and 
halved for retention 

 

Figure 15 – Performance of optimisation under noise – half the variation in elasticity parameter and 
double for retention 

 
As argued in Semenovich & Petterson (2019), the main protection against these effects (and 
understanding which of the above scenarios is closest to reality) is proper validation of the effectiveness 
of optimisation – either by constructing a suitable estimate from existing data, or setting up an 
independent validation group. 

3.4 The criticality of assumed model structure 

The underlying model structure connecting retention and elasticity is often set for practical and 
tractability reasons. Our setup in section 2.1 deliberately mimics a GLM structure with logistic link, since 
this is a practical way to estimate elasticity as a function of other terms in an internally consistent way 
from retention data. However, there is no intrinsic reason why this is the ‘right’ structure – no iron law 
saying that the logistic link is how elasticity terms and demand should be connected. 

In a content of abundant data, the decision is less critical – enough interactions and nonlinear terms can 
be added to manhandle a sensible elasticity effect (Miller & Moulder 2018). However, price sensitivity 
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testing is expensive and messy – data is not abundant. This means that the assumed structure is 
potentially very important.    

We illustrate this by considering the following alternative structures: 

▪ Alternative 1 – Elasticity effect also depends on retention linear predictor 

𝑔(𝑥𝑖) = 𝑔(𝑧𝑖 + 𝑒𝑖
∗𝑝𝑖(𝑧𝑖 + 1))  

▪ Alternative 2 – Elasticity effect uses a probit link rather than logistic 

𝑔(𝑥𝑖) = Φ(𝑧𝑖 + 𝑒𝑖
∗𝑝𝑖)  

▪ Alternative 3 – Elasticity is on a ‘per dollar’ basis rather than a percentage basis  

𝑔(𝑥𝑖) = 𝑔(𝑧𝑖 + 𝑒𝑖
∗𝑝𝑖𝑃𝑖) 

In each case we generate elasticity under the alternative as truth, in a way that the sensitivity (as 
measured by a 5% price increase) is equivalent to our base setup. We then choose the optimal estimate 
of a misspecified elasticity, where we assume that the model form is our original 𝑔(𝑧𝑖 + 𝑒𝑖𝑝𝑖), but 
choose the best possible linear transform of the true elasticity. This means that our misspecified 
estimate correctly orders elasticity of all customers and gets elasticity effects right on average, but there 
is a degree of error induced by the misspecification of the retention function. 

For each alternative we can optimise our model correctly and under misspecification, and then see the 
impact. The figures below show the results of this analysis. Figure 16 compares optimal price changes if 
the elasticity was known perfectly, against optimised price changes under the misspecified models. 
Figure 15 compares the optimised profit and risk premium achieved. We observe: 

▪ Alternative 1 - Extra retention correlation: Price changes under the misspecified model have a 
similar general trend to the perfect model, but there is considerable variation at a customer level 
depending on their starting retention. On average, premium decreases are somewhat moderated in 
the misspecified model. We see slightly smaller premium decreases for policies with large price 
decreases under the optimal model, and vis versa. There are many examples of policies with over 
20% difference in premium between the two models. Despite this variation, the optimisation gains 
under the misspecified models are not significantly less than under the optimised one. This 
demonstrates how slight model structure changes can have considerable impacts on customer 
level premiums, even if top level results change only minimally. 

▪ Alternative 2 – Probit link: The probit link model suggests smaller price changes for customers that 
are pushed to the upper and lower bounds under the misspecified logit link model. This occurs as 
the probit link function results in modelled retention approaching asymptotes more rapidly with 
price adjustments. The misspecification results in small reductions in top line optimisation gains. 

▪ Alternative 3 – Per dollar elasticity: Applying elasticity on a ‘per dollar’ basis has a significant 
impact on optimised premiums. There is now a strong incentive to price low risk cost policies at the 
upper bound, as the impact of increasing their premiums is relatively low. This change also results in 
apparent optimisation gains that are significantly larger than in other scenarios. While this scenario 
is likely not realistic, some weaker per dollar effects might be present in customer behaviour and it 
serves to illustrates how differences in true elasticity structure can cause large differences in 
resulting premiums and apparent optimisation gains. 
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Figure 16 – Price changes – optimal and optimal under misspecification for the three alternative setups 

 

Figure 17 – Optimisation frontiers – optimal and optimal under misspecification for the three alternative 
setups 

 

3.5 What is happening to the customer base over time? 

Understanding the impact of price optimisation on the customer base over time is a natural question.  

The core of optimisation is to increase prices for less elastic customers and decrease for more elastic. 
This necessarily implies a shift in towards a more elastic customer base than would otherwise be the 
case. We first use a simplified multiyear strategy to illustrate, where we optimise over a single year and 
adopt those prices unchanged over five years to see the impact. 

Figure 18 shows the change in the distribution of elasticity parameter and base retention rates for non-
optimised and optimised prices. In both cases the shift to more elastic and higher churn is clear – albeit 
on a five-year timescale that would allow for new business to partially balance. There is a sense that 
optimisation creates a more challenging future customer base, so the multiyear view becomes 
important. This is particularly true of profitability – since optimised profit margins are largest for 
customers with higher retention and lower elasticity; this is also shown on the figure. 

Alternative 1 –
extra retention correlation

Alternative 2 –
Probit link

Alternative 3 –
Per dollar elasticity

Alternative 1 –
extra retention correlation

Alternative 2 –
Probit link

Alternative 3 –
Per dollar elasticity
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Figure 18 – Histograms showing change in customer base after five years of standard pricing and 
(simplified) optimisation. Green curve shows targeted profit margins at different level of elasticity and 
retention. 

 

The effect of a more challenging customer base over time narrows the gap between optimised and 
simple pricing strategies for more distant years. The blue curve in Figure 19 shows that the initial 19% 
boost in profit (relative to uniform pricing) decays to just 10% by year five; the ability to generate extra 
profits dissipates as the fraction of high retention and lower elasticity customers dissipate. 

The figure shows two other decay curves: 

▪ With elasticity misestimation (50% accuracy, as per Section 3.2) the decay is more rapid as the 
falling customer load accelerates the profit decay. Total custom numbers also decay consistently 
relative to uniform pricing under elasticity misestimation. 

▪ With elasticity misestimation and varying elasticity (so estimated elasticity is unchanged, but the 
‘true’ elasticity parameter is resampled each quarter around this), we see slightly faster decay again, 
in both profit and retention. By year five profit is the same as under uniform pricing, and retention is 
7% lower. Combined, this reflects performance that is substantially worse than uniform pricing. This 
sort of varying error is potentially an additional source of profit leakage to track in pricing validation 
work. 
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Figure 19 – Retention and profit relativities compared to simple pricing strategies 

 
Finally, we note that although we have provided results on a simplified multiyear basis, results do tend 
to hold under different arrangements. For example, we ran a multiyear optimisation of our base setup, 
where the target was maximum cumulative profit subject to a target risk premium retained in the final 
(third) year. As shown in Figure 20, the gap between expected and actual risk premium grows steadily 
over the time period. However, the drop in profit is sharper and accelerates after the first year; the lost 
volume in the first year contributes to a snowballing effect on profits in later years too.  

Figure 20 – Example impact of elasticity misestimation for a three-year optimisation 

 
There is a more general question around how properly implemented multiyear strategies should vary 
prices relative to one-year optimisations. Generally, a longer-term view should place more value on 
retaining customers and so temper price increases. A full treatment of this is beyond the scope of this 
paper, but it is worth noting that as with section 3.1, the specifics around setup can drive different 
behaviours. In the example above, the optimal strategy over three years is to push up prices a little more 
initially, and the make up for it in later years with a softer pricing strategy to balance out and achieve the 
desired risk premium volume at year 3. 
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3.6 Challenges of modelling elasticity 

Elasticity modelling as a causal problem 

Estimating elasticity is a causal modelling problem. We are concerned with the treatment-effect of 
changing price on renewal probability. As a result, it comes with the standard challenges of casual 
modelling, including unobserved counterfactuals and concerns around confounding. 

Moreover, elasticity modelling for optimisation is a heterogenous treatment effect estimation problem. 
We are not only interested in average elasticity, but also differences in elasticity between customers. 
This is more challenging again. 

Model structure 

There is an evolving literature on machine learning approaches for heterogeneous treatment effect 
modelling, with techniques such as causal forests as in Athey et al. (2018) as a prominent example.  
While the application of these methods to insurance price elasticity is an interesting area with early 
indications of promise, for example in Guelman & Guillén (2014) and Verschuren (2022), the tools to run 
these models are relatively immature, and to our knowledge have not been widely deployed by 
Australian insurers. 

In practice, elasticity is often modelled as part of standard retention modelling. This is commonly in the 
form of a GLM (or regularised equivalents) that includes price change terms in the model. Interactions 
between price change terms and other parameters are used to capture differences in elasticity between 
different cohorts of customers. We limit our attention to this GLM model structure in this paper. 

We note that while tree-based machine learning models like XGBoost and Random Forests are 
commonly used by insurers, they are not suitable for demand modelling in their raw form. This is 
because optimisation relies on smooth estimates of the relationship between price and retention, which 
tree-based methods to not produce by default. 

The need for random price flexes in historical data 

As a causal modelling problem, estimating elasticity requires a degree of historical price exploration. If a 
model is to estimate elasticity for different cohorts of customers, then that price exploration must occur 
for all subsets of customers. 

Ideally, a fraction of policies would have random price changes applied to their premium, so that they 
could be used for elasticity modelling in the future. However, there can be several barriers to doing this, 
including: 

▪ Technological costs and challenges in implementing random price flexes 

▪ Ethical or regulatory concerns 

▪ Lost profitability by taking policies that would have otherwise been optimised, and instead assigning 
them less profitable random price changes. 

In the absence of truly random price changes, elasticity models can be constructed by exploiting price 
variation due to historical price changes. This has significant limitations relative to systematic random 
price flexing. Historical price changes will generally be applied differently across different types of 
customers, and are fixed at a single point in time, which means that additional care is needed to allow 
for the possibly confounding influence of changes in customer behaviour over time. 

Risks of training elasticity models on historically optimised data 

Elasticity may also be modelled by exploiting variation in premium loadings due to historical price 
optimisation. That is, training retention models on historically optimised policies. This requires great 
care, as historical price changes are not randomly assigned. 

While optimisation is likely to produce a wide range of price changes across the portfolio, any individual 
cohort of customers may have very little price exploration. For example, a highly elastic cohort of 
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customers may have always received price decreases. This challenges the positivity assumption 
(Hernan & Robins (2020)) of causal modelling, which requires variation in treatment assignment for all 
sub-groups, and can lead to material degradation in model performance if not properly controlled for. 

To demonstrate this, we compare the results of optimisations run under the following scenarios. 

▪ Perfect model – Optimisation with full knowledge of customers’ elasticity 

▪ Retention model trained on random price flexed data – Training data includes random price flexes 
between -20% and +20%. 

▪ Retention model trained on optimised data – Training data is taken from the outputs of the basic 
optimisation described in Section 2.5. 

All retention models are trained as binomial GLMs using an inverse logit link function, and contain main 
effects for 𝑥𝑖1 to 𝑥𝑖4, plus a price change term to model elasticity. Note that in this simple setup we use 
only a single price change term that applies to all customers, to reflect a scenario where the retention 
model does not properly control for variation in historically optimised prices. 

Table 2 shows the parameter estimates from these each of these models. We also show the “true 
parameters”, which are the implied coefficients from the simulated demand relationship as specified in 
Section 2.1. For these true parameters, the intercept and elasticity parameter 𝑒 are based on average 
values across the customers in the simulated data. 

The model that is trained on data with random price flexes accurately recreates the true parameters 
from the historical data. However, the model trained in optimised customer data substantially 
understates average elasticity. This occurs because of the correlation between other modelled variables 
and historical optimised price changes. For example the 𝑥3 coefficient is lower in the model trained on 
optimised data, as high retention policies are generally given lower optimised price changes. This 
parameter captures some signal that would otherwise have been captured in the elasticity term. 

Table 2 – True parameters and estimates from retention models 

Parameter Intercept 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒆 

True parameters 1.38 
(average) 

0.10 0.00 1.00 0.00 -3.00 
(average) 

Price flex data model 1.38 0.11 0.00 1.00 -0.04 -3.00 
Optimised data model 1.44 0.04 0.00 0.75 0.11 -1.84 

Table 3 shows the results of optimisation under each of these models, as well as a uniform price 
change. 

▪ While the price flex data model has lower profit than the perfect model due to fitting only a simple 
constant elasticity effect, it still offers a 7% improvement in profit over a uniform price change. 

– While not the focus of this paper, we tested a similar analysis on a simulated data designed to 
look more like a new business portfolio. Here, a main effect only model provided almost no 
benefit over a uniform price change strategy. This is in line with the observations in Section 3.2. 

▪ The model trained on optimised data offers no incremental profit improvement over the uniform 
price change strategy, due to the biases in model parameter estimates. While offering no 
improvement in profit, optimising using this model does produce other undesirable outcomes. 
Notably: 

– A wider distribution of premium changes than the price flex data model, as the lower average 
elasticity estimate pushes more policies to the extremes. 

– Writing a level of overall risk premium that is different to that targeted in the optimisation run. In 
this example, running the optimisation to target a risk premium of $68m resulting in an actual 
risk premium of only $66m (-3%), as the model underestimated the loss of business from an 
increase in average premiums. The results in Table 3 have been adjusted to use a target risk 
premium that achieves an actual result of $68m, to provide comparability with other scenarios. 
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Table 3 – Optimisation results when optimising with retention models 

Scenario 
Customer 
volumes 

Avg 
premium 

GWP 
($m) 

Risk 
premium 

($m) 
Profit 
($m) 

Uniform price change 79,600 1,004 79.96 68.00 11.96 
True parameters 79,712 1,036 82.25 68.00 14.25 
Price flex data model 79,637 1,014 80.84 68.00 12.84 
Optimised data model 79,615 1,004 79.96 68.00 11.96 

We note that the deterioration in performance seen here is an extreme example, as the main effect only 
elasticity parameterisation means that the model is not able to control for the biases in the optimised 
training data. At the other extreme, if we train a retention model that includes all interactions between 
the elasticity term and relevant other variables, the optimisation performs well, even if trained on 
optimised data. 

Nonetheless, in practice is it challenging to perfectly parameterise a model to control for all biases in 
historical price changes. This example serves to demonstrate how optimisation performance can 
deteriorate if historical biases are not fully controlled for. 

3.7 Volumes of data needed to estimate elasticity interactions 

Even if training a retention model on data containing random historical price flexes, significant amounts 
of data can be required to accurately estimate elasticity for different subgroups of customers. 

This is because estimating interactions (and variation in elasticity is estimated as such a model 
interaction) requires substantially more data than estimating main effects. For example, Gelman et al. 
(2020) shows that under reasonable assumptions, it would require 16 times as much data to estimate an 
interaction that is half the size of a main effect. 

The exact amount of data required to accurately estimate interactions depends on several factors, 
including the size of the sub-population for which the interaction is being estimated, and the size of the 
interaction itself. 

The magnitude of historical price variations is also a key influence on required sample sizes in elasticity 
modelling. Large historical price variations result in larger swings in demand, and more accurate 
estimates of elasticity – this is conceptually analogous to modelling a large treatment effect. 
Correspondingly, small historical price changes are analogous to smaller treatment effects, and are 
significantly harder to model. 

As standard errors increase with the square root of sample size, halving the size of price changes in 
historical data (for example, moving from ±20% to ±10%) could be expected to increase the required size 
of the modelling dataset by a factor of four. 

This is a consideration when designing price flexing processes. Larger price changes may be less 
desirable from a customer experience perspective, but can also substantially reduce the number of 
customers to which random price changes need to be applied. We note that this is not the only 
consideration in selecting the size of price flexes. For example, insurers may which to collect data 
across the range of price flexes that may be considered in optimisation. 

We use simulated data to examine the relationship between optimisation gains, the number of price-
flexed training samples, and the magnitude of historical prices flexes. We simulate data follows: 

1. Simulate a data under the baseline setup described in Section 2.1 
2. Randomly select price changes between the specified upper and lower limit 
3. Calculate expected retention under these selected price changes, and simulate binary retention 

outcomes 
4. Randomly down sample the dataset to achieve the desired dataset size. 
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We then train a retention model on the simulated dataset, and use model to optimise premiums on the 
full simulated dataset of 100,000 customers. Retention models are built either as: 

▪ A main effect model, using a single price change (elasticity parameter) term for all customers 

▪ A model with interactions between the price change term and customer characteristics. We do this 
by ordering and grouping the true elasticity parameter 𝑒𝑖  into five equally sized groups, and including 
a GLM model term for the interaction between the price change term and each group. This allows 
the model to fit a different elasticity parameter for each of the five groups. We note that this is 
somewhat optimistic, as we have given the model knowledge of 5 groups of customers with 
perfectly ordered true elasticities. In practice, required interactions would be less clear-cut, as true 
elasticity is unknown. 

We repeat this process for a range of combinations of sample size and price change magnitude. Finally, 
we repeat the process 50 times for each combination, and average results across these repetitions. This 
smooths out the significant volatility that exists in performance for individual runs. 

Figure 21 shows the results of this analysis. We plot the percentage of the maximum possible 
optimisation gains that is achieved by each model. We observe that: 

▪ Where sample sizes and historical price changes are small, including interactions results in worse 
performance than a simple main-effect model. In some cases, performance can be worse than a 
simple uniform price change. 

▪ Optimisation gains increase with sample size, but there are diminishing returns on sample size 
increases. Optimisation gains improve roughly in proportion to the square root of sample size. This 
may be expected as standard errors of parameters decrease with the square root of sample size, 
and Section 3.3 shows optimisation performance varying approximately linearly with elasticity 
parameter estimation accuracy. 

▪ Optimisation gains at a given sample size increase significantly with the magnitude of historical 
price flexes. As above, models trained on data with a ±10% price flex would require approximately 
40,000 observations (under a smoothed curve) to achieve the same performance as a model built on 
only 10,000 observations of data with a ±20% price flex. 

Figure 21 – Relationship between retention modelling data size and optimisation performance 

 
The exact number of samples required to satisfactorily model elasticity interactions will vary based on 
details of those interactions. Despite this, this simulation study suggests that sample sizes of at least 
5,000 to 10,000 with random price flexes would be required to satisfactorily model simple interactions 
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under one plausible setting. In practice, lower data quality, smaller interaction effect sizes, or complex 
or uncertain interactions may mean that even larger volumes are needed. 

This may be tractable for major products sold by large insurers. However, it may present a significant 
limitation to optimisation for small insurers or lower volumes products. This is compounded by the 
preference for recent data, and desire to only randomly price flex a small proportion of the overall 
customer base. 

4 Discussion  

This paper demonstrates that while price optimisation can offer an opportunity for increasing profits, 
there are several complexities that may mean that benefits are significantly lower than estimated.  

These complexities, while technically interesting, mean that care should be taken in both the 
implementation of optimisation, and measurement of its performance. In some situations, the potential 
costs and risks of price optimisation could call into question its overall value. 

We summarise key lessons from our analysis below. 

▪ Estimating the performance of optimisation using the same retention (and risk) models that are used 
for performing optimisation leads to a material overstatement of optimisation gains. This is the key 
theoretical result from Semenovich & Petterson (2019), which we observe in our simulated results. 
This highlights the importance of validating optimisation performance. 

▪ The choice of what to optimise is very important, with different selections resulting in substantially 
different premium outcomes. For example, we see that optimising to a target number of policies 
written can result in significant biases in premium loadings by policy size. Large policies are given 
substantial premium increases, while policy volumes are maintained by writing a larger number of 
small policies at low (or negative) profit margins - likely an undesirable outcome in practice. 

We instead propose optimising to a target volume of risk premium as a preferable optimisation 
structure. Many other optimisation structures are also possible. Each will result in different pricing 
behaviour, and so should be considered carefully before deployment. 

We note that in practice, it may be desirable to optimise to multiple constraints. For example, 
maximising profit while constraining both written risk and policy volumes. While we do not explore 
this multi-constraint setting in this paper, we expect similar considerations to be relevant to those 
identified for the single-constraint setting. And the risk premium constraint remains the most 
relevant for managing a portfolio in an internally consistent way.   

▪ Both elasticity and customers’ initial retention have an impact on their optimised premiums, with 
the impact of initial retention influenced by the selected link function used in modelling. 

▪ Error in estimation of elasticity significantly decays optimisation performance. Where accuracy of 
estimation is particularly low, this includes the possibility of worse performance than no 
optimisation at all. The impact of elasticity estimation is highly dependent on the relationship 
between retention variability and elasticity variability. If variation in elasticity is low relative to 
variation in retention, good optimisation gains are possible even with poor estimates of the elasticity 
parameter. Overfitting and adding noise to elasticity estimates will typically result in higher 
estimated optimisation performance, even though, as shown here, true performance will be lower. 

▪ The structure of models used for estimating elasticity is very important. A correctly structured model 
will reflect the true relationship between price and retention, but this is not observed directly so is 
difficult to test. Where the true price retention relationship does not follow assumed structure, 
optimised premiums can end being materially differently to where they would have if the true 
structure was known. For example, changing retention to vary by dollar rather than percentage price 
changes results in significantly different premium changes and optimisation performance. In 
practice, the true relationship may be somewhere between dollar and percentage changes and 
include various kinks or steps in the elasticity curve. 



 

 25 
 

We also see that in some cases overall optimisation performance may not be significantly impacted 
by model structure changes, even if the distribution of customer level premiums is significantly 
different. 

▪ Optimisation leads to a more elastic and higher-churn customer base over time, as more elastic 
policies are assigned lower premiums loadings than less elastic ones. This change in customer base 
narrows the gap between optimised and fixed price strategies over time, such that is some cases 
there may be limited benefit from optimisation after several years – that is, most benefit is realised in 
the first years. 

▪ Elasticity modelling is a causal estimation problem, and as such requires historical training data that 
includes a degree of price exploration. Ideally, this would take the form of a proportion of customers 
that are assigned a random price flex, although implement this may not be feasible in practice. An 
alternative is to train elasticity models on data from historically optimised policies. However, this 
can significantly deteriorate the quality of elasticity models and resulting optimisation, due to biases 
in which customers are assigned price changes in the models’ training data. This problem can be 
partly addressed by correctly controlling for all confounding factors in the training data, although 
this is likely to be challenging in practice. 

▪ Relatively large volumes of random price-flex data are required for elasticity modelling, as 
optimisation benefits from modelling interactions between elasticity and customer characteristics. 
These interactions require substantially more data than estimate main effects. For example, 5,000-
10,000 observations with ±10% price flexes were required to achieve meaningful optimisation gains 
in our simulated setting. Additionally, while smaller price flexes may be more palatable for insurers, 
models trained with smaller price flexed require much more training data for the same performance. 
Halving the size of prices flexes increases required data by a factor of approximately four. The 
requirement for large volumes of price-flexed training data may present a barrier to optimisation for 
smaller insurers, or for smaller products. 

Future work 

There are several natural extensions of the analysis in this paper, which would work towards better 
understanding the limitations of price optimisation. These include: 

▪ Extending the analysis to use actual customer data, rather than simulated results. 

▪ Extending the analysis to relax the simplifications identified in Section 2.1. This includes reviewing 
results in a new business setting, considering multi-product effects, allowing for mid-term 
cancellations, and allowing for more complex retention functions that may include competitor 
effects or other discontinuities. 

▪ Analysing the effectiveness and properties of techniques for validating optimisation performance in 
an unbiased matter. Examples include comparisons with non-optimised cohorts of the customer 
base, and inverse-propensity based methods as explored in Semenovich & Petterson (2021). 
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