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• From an insurer’s point of view, the use of price optimization tools is simply a 

sound business practice that is widely used in many other industries.

• An insurer prices two consumers differently with the same risk profile 

because their anticipated price sensitivity differs. 

• Consumers have taken a dim viewpoint of price optimization

• unfair penalty on customer loyalty 

• impose price increases on customers, not for their tendency to have high 

claims but rather for their tendency to be loyal

• Many of those less likely to shop around for a better price are low-income and 

minority consumers.

• Thus, although insurers may be optimizing neutral objectives, the result of their 

actions may result in unintentional proxy discrimination.



• Many U.S. insurance state regulators have banned price optimization in personal 

lines insurance since 2015. 

• In January 2022, the FCA banned home and motor insurers from engaging in price-

walking -- gradually increasing premiums by quoting existing policyholders a higher 

price to renew their insurance than the offers available to new customers.

• What are the welfare implications of such bans?



How to achieve it?

Fairness in cost prediction or pricing?

Fairness in terms of prices or markups?

Which fairness policy/criteria to apply?





• Cost Modeling

• Data: A French private motor insurance drawn from the R package CASdatasets (Dutang, Charpentier, and Dutang (2015). We 
focus on the material damage coverage. It contains 100,000 third-party liability (TPL) policies observed from 2009 to 2010.

• Protected attribute: gender
• Model: GLM and XGBoost (Poisson & gamma loss)

• Demand Modeling

• We construct our simulated consumers by utilizing the claims data from Dutang et al. (2015) and the estimated demand 
models from Einav et al. (2010) and Jin and Vasserman (2021).

• Price Optimization

• Then we find the individualized profit-maximizing price of a single-product firm by solving a high-dimensional constrained 
optimization problem, utilizing the recent progress of optimization techniques Cotter et al. (2019).



First Finding

Fairness in machine learning (cost prediction)  ≠ Fairness in outcome (pricing)



• Females have lower prices on average. 
• Fair regulations on cost modelling reduces the price gaps among groups. 



• Females have higher markups on average. 
• Fair regulations on cost modelling increases the markup gaps between gender groups. 



Second Finding

Fairness in prices ≠ Fairness in markups



• PDP (demographic parity) can perfectly equalize the price between different gender groups but 

creates a huge markup gap.



Third Finding

Fairness-Accuracy Trade-off

Welfare



Our empirical results show that

• Decrease machine learning accuracy by only 0.5% can decrease 

5% of profit and consumer welfare.

Small prediction accuracy drop can lead to big profit and welfare loss.
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“Cost of Fairness”??
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Consumer Welfare v.s Firm Profit (Monopoly Market)

• Large negative impact of 

accountability (PA) 

regulation on both insurer 

and consumers.



• Similar but less magnitude 
impact for PDP (Equalised 
prices of both genders).

Consumer Welfare v.s Firm Profit (Monopoly Market)



• POB (Price optimization 
ban) decreases consumer 
welfare and firm profit .

Consumer Welfare v.s Firm Profit (Monopoly Market)



• PAF (Actuarial group fairness) 

has small negative effect on 

both firms and consumers.

Consumer Welfare v.s Firm Profit (Monopoly Market)



The welfare cost of fairness can be high on both genders (monopoly market)



Consumer Welfare v.s Firm Profit (Competitive Market Assumption)

• PA (accountability) 

and POB (price 

optimisation ban), can 

improve the welfare of 

both males and 
females. 
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